2.4 KiB
Representations of functionals
Lemma 1: let
(X, \langle \cdot, \cdot \rangle)be an inner product space, if
\forall z \in X: \langle x, z \rangle = \langle y, z \rangle \implies x = y,and if
\forall z \in X: \langle x, z \rangle = 0 \implies x = 0.
??? note "Proof:"
Will be added later.
Lemma 1 will be used in the following theorem.
Theorem 1: for every bounded linear functional
fon a Hilbert space(X, \langle \cdot, \cdot \rangle), there exists az \in Xsuch that
f(x) = \langle x, z \rangle,for all
x \in x, withzuniquely dependent onfand\|z\| = \|f\|.
??? note "Proof:"
Will be added later.
Sequilinear form
Definition 1: let
XandYbe vector spaces over the fieldF. A sesquilinear formhonX \times Yis an operatorh: X \times Y \to Fsatisfying the following conditions
\forall x_{1,2} \in X, y \in Y: h(x_1 + x_2, y) = h(x_1, y) + h(x_2, y).\forall x \in X, y_{1,2} \in Y: h(x, y_1 + y_2) = h(x_1, y_1) + h(x_2, y_2).\forall x \in X, y \in Y, \alpha \in F: h(\alpha x, y) = \alpha h(x,y).\forall x \in X, y \in Y, \beta \in F: h(x, \beta y) = \overline \beta h(x,y).
Hence, h is linear in the first argument and conjugate linear in the second argument. Bilinearity of h is only true for a real field F.
Definition 2: let
XandYbe normed spaces over the fieldFand leth: X \times Y \to Fbe a sesquilinear form, thenhis a bounded sesquilinear form if
\exists c \in F: |h(x,y)| \leq c |x| |y|,for all
(x,y) \in X \times Yand the norm ofhis given by
|h| = \sup_{\substack{x \in X \backslash {0} \ y \in Y \backslash {0}}} \frac{|h(x,y)|}{|x| |y|} = \sup_{|x|=|y|=1} |h(x,y)|.
For example, the inner product is sesquilinear and bounded.
Theorem 2: let
(X, \langle \cdot, \cdot \rangle_X)and(Y, \langle \cdot, \cdot \rangle_Y)be Hilbert spaces over the fieldFand leth: X \times Y \to Fbe a bounded sesquilinear form. Then there exists a bounded linear operatorsT: X \to YandS: Y \to X, such that
h(x,y) = \langle Tx, y \rangle_Y = \langle x, Sy \rangle_X,for all
(x,y) \in X \times Y, withTandSuniquely determined byhwith norms\|T\| = \|S\| = \|h\|.
??? note "Proof:"
Will be added later.