2.4 KiB
Dual vector spaces
We have a n \in \mathbb{N} finite dimensional vector space V such that \dim V = n, with a basis \{\mathbf{e}_i\}_{i=1}^n and a field F. In the following sections we make use of the Einstein summation convention introduced.
Definition 1: let
\mathbf{\hat f}: V \to Fbe a covector or linear functional onVif for all\mathbf{v}_{1,2} \in Vand\lambda, \mu \in Fwe have
\mathbf{\hat f}(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \mathbf{\hat f}(\mathbf{v}_1) + \mu \mathbf{\hat f}(\mathbf{v}_2).
Throughout this section covectors will be denoted by hats to increase clarity.
Definition 2: let the the dual space
V^* \overset{\text{def}} = \mathscr{L}(V, F)denote the vector space of covectors on the vector spaceV.
Each basis \{\mathbf{e}_i\} of V therefore induces a basis \{\mathbf{\hat e}^i\} of V^* by
\mathbf{\hat e}^i(\mathbf{v}) = v^i,
for all \mathbf{v} = v^i \mathbf{e}_i \in V.
Theorem 1: the dual basis
\{\mathbf{\hat e}^i\}ofV^*is uniquely determined by
\mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i,for each basis
\{\mathbf{e}_i\}ofV.
??? note "Proof:"
Let $\mathbf{\hat f} = f_i \mathbf{\hat e}^i \in V^*$ and let $\mathbf{v} = v^i \mathbf{e}_i \in V$, then we have
$$
\mathbf{\hat f}(\mathbf{v}) = \mathbf{\hat f}(v^i \mathbf{e}_i) = \mathbf{\hat f}(\mathbf{e}_i) v^i = \mathbf{\hat f}(\mathbf{e}_i) \mathbf{\hat e}^i(\mathbf{v}) = f_i \mathbf{\hat e}^i (\mathbf{v}),
$$
therefore $\{\mathbf{\hat e}^i\}$ spans $V^*$.
Suppose $\mathbf{\hat e}^i(\mathbf{e}_j) = \delta_j^i$ and $\lambda_i \mathbf{\hat e}^i = \mathbf{0} \in V^*$, then
$$
\lambda_i = \lambda_j \delta_i^j = \lambda_j \mathbf{\hat e}^j(\mathbf{e}_i) = (\lambda_j \mathbf{\hat e}^j)(\mathbf{e}_i) = \mathbf{0},
$$
for all $i \in \mathbb{N}[i \leq n]$. Showing that $\{\mathbf{\hat e}^i\}$ is a linearly independent set.
Obtaining a vector and consequent covector space having the same dimension n.
From theorem 1 it follows that for each covector basis \{\mathbf{\hat e}^i\} of V^* and each \mathbf{\hat f} \in V^* there exists a unique collection of numbers \{f_i\} such that \mathbf{\hat f} = f_i \mathbf{\hat e}^i.
Theorem 2: the dual of the covector space
(V^*)^* \overset{\text{def}} = V^{**}is isomorphic toV.
??? note "Proof:"
Will be added later.