6.8 KiB
Signals
Definitions
Definition: a signal is a function of space and time.
- Output can be analog or quantised.
- Input can be continuous or discrete.
Definition: a signal can be sampled at particular moments
k T_sin time, withk \in \mathbb{Z}andT_s \in \mathbb{R}the sampling period. For a signalf: \mathbb{R} \to \mathbb{R}sampled with a sampling periodT_smay be denoted by
f[k] = f(kT_s), \qquad \forall k \in \mathbb{Z}.
Definition: signal transformations on a function
x: \mathbb{R} \to \mathbb{R}obtaining the functiony: \mathbb{R} \to \mathbb{R}are given by
Signal transformation Time Amplitude Reversal y(t) = x(-t)y(t) = -x(t)Scaling y(t) = x(at)y(t) = ax(t)Shifting y(t) = x(t - b)y(t) = x(t) + bfor all
t \in \mathbb{R}.
For sampled signals similar definitions hold.
Symmetry
Definition: consider a signal
f: \mathbb{R} \to \mathbb{R}which is defined in an interval which is symmetric aroundt = 0, we define.
fis even iff(t) = f(-t),\forall t \in \mathbb{R}.fis odd iff(t) = -f(-t),\forall t \in \mathbb{R}.
For sampled signals similar definitions hold.
Theorem: every signal can be decomposed into symmetric parts.
??? note "Proof:"
Will be added later.
Periodicity
Definition: a signal
f: \mathbb{R} \to \mathbb{R}is defined to be periodic inTif and only if
f(t + T) = f(t), \qquad \forall t \in \mathbb{R}.
For sampled signals similar definitions hold.
Theorem: a summation of two periodic signals with periods
T_1, T_2 \in \mathbb{R}respectively is periodic if and only if
\frac{T_1}{T_2} \in \mathbb{Q}.
??? note "Proof:"
Will be added later.
Signals
Definition: the Heaviside step signal
u: \mathbb{R} \to \mathbb{R}is defined by
u(t) = \begin{cases} 1 &\text{ if } t > 0,\ 0 &\text{ if } t < 0,\end{cases}for all
t \in \mathbb{R}.
For a sampled function the Heaviside step signal is given by
u[k] = \begin{cases} 1 \text{ if } k \geq 0, \ 0 \text{ if } k < 0, \end{cases}
for all k \in \mathbb{Z}.
Definition: the rectangular signal
\text{rect}: \mathbb{R} \to \mathbb{R}is defined by
\text{rect} (t) = \begin{cases} 1 &\text{ if } |t| < \frac{1}{2}, \ 0 &\text{ if } |t| > \frac{1}{2},\end{cases}for all
t \in \mathbb{R}.
The rect signal can be normalised obtaining the scaled rectangular signal D: \mathbb{R} \to \mathbb{R} defined by
D(t, \varepsilon) = \begin{cases} \frac{1}{\varepsilon} &\text{ if } |t| < \frac{\varepsilon}{2},\ 0 &\text{ if } |t| > \frac{\varepsilon}{2},\end{cases}
for all t \in \mathbb{R}.
The following signal has been derived from the scaled rectangular signal D: \mathbb{R} \to \mathbb{R} used on a signal f: \mathbb{R} \to \mathbb{R} for
\lim_{\varepsilon ;\downarrow; 0} \int_{-\infty}^{\infty} f(t) D(t, \varepsilon)dt = \lim_{\varepsilon ;\downarrow; 0} \frac{1}{\varepsilon} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f(t) dt = f(0),
using the mean value theorem for integrals.
Definition: the Dirac signal
\deltais a generalized signal defined by the properties
\begin{align*} \delta(t - t_0) = 0 \quad \text{ for } t \neq t_0,& \ \int_{-\infty}^\infty f(t) \delta(t - t_0) dt = f(t_0),& \end{align*}for a signal
f: \mathbb{R} \to \mathbb{R}continuous int_0.
For sampled signals the \delta signal is given by
\delta[k] = \begin{cases} 1 &\text{ if } k = 0, \ 0 &\text{ if } k \neq 0.\end{cases}
Signal sampling
We already established that a signal f: \mathbb{R} \to \mathbb{R} can be sampled with a sampling period T_s \in \mathbb{R} obtaining f[k] = f(kT_s) for all k \in \mathbb{Z}. We can also define a time-continuous signal f_s: \mathbb{R} \to \mathbb{R} that represents the sampled signal using the Dirac signal, obtaining
f_s(t) = f(t) \sum_{k = - \infty}^\infty \delta(t - k T_s), \qquad \forall t \in \mathbb{R}.
Definition: the sampling signal or impulse train
\delta_{T_s}: \mathbb{R} \to \mathbb{R}is defined as
\delta_{T_s}(t) = \sum_{k = - \infty}^\infty \delta(t - k T_s)for all
t \in \mathbb{R}with a sampling periodT_s \in \mathbb{R}.
Then integration works out since we have
\int_{-\infty}^\infty f(t) \delta_{T_s}(t) dt = \sum_{k = -\infty}^\infty \int_{-\infty}^\infty f(t) \delta(t - k T_s) dt = \sum_{k = -\infty}^\infty f [k],
by definition.
Convolutions
Definition: let
f,g: \mathbb{R} \to \mathbb{R}be two continuous signals, the convolution product is defined as
f(t) * g(t) = \int_{-\infty}^\infty f(u)g(t-u)dufor all
t \in \mathbb{R}.
Proposition: the convolution product is commutative, distributive and associative.
??? note "Proof:"
Will be added later.
Theorem: let
f: \mathbb{R} \to \mathbb{R}be a signal then we have for the convolution product betweenfand the Dirac signal\deltaand somet_0 \in \mathbb{R}
f(t) * \delta(t - t_0) = f(t - t_0)for all
t \in \mathbb{R}.
??? note "Proof:"
let $f: \mathbb{R} \to \mathbb{R}$ be a signal and $t_0 \in \mathbb{R}$, using the definition of the Dirac signal
$$
f(t) * \delta(t - t_0) = \int_{-\infty}^\infty f(u) \delta(t - t_0 - u)du = f(t - t_0),
$$
for all $t \in \mathbb{R}$.
In particular f(t) * \delta(t) = f(t) for all t \in \mathbb{R}; \delta is the unity of the convolution.
The average value of a signal f: \mathbb{R} \to \mathbb{R} for an interval \varepsilon \in \mathbb{R} may be given by
f(t) * D(t, \varepsilon) = \frac{1}{\varepsilon} \int_{t - \frac{\varepsilon}{2}}^{t + \frac{\varepsilon}{2}} f(u)du.
For sampled/discrete signals we have a similar definition for the convolution product, given by
f[k] * g[k] = \sum_{m = -\infty}^{\infty} f[m]g[k - m],
for all k \in \mathbb{Z}.
Correlations
Definition: let
f,g: \mathbb{R} \to \mathbb{R}be two continuous signals, the cross-correlation is defined as
f(t) \star g(t) = \int_{-\infty}^\infty f(u) g(t + u)dufor all
t \in \mathbb{R}.
Especially the auto-correlation of a continuous signal f: \mathbb{R} \to \mathbb{R} given by f(t) \star f(t) for all t \in \mathbb{R} is useful, as it can detect periodicity. This is proved in the section Fourier series.
For sampled/discrete signals a similar definition exists given by
f[k] \star g[k] = \sum_{m = -\infty}^{\infty} f[m]g[k + m],
for all k \in \mathbb{Z}.