841 B
841 B
Completion
Definition 1: let
(X,d)and(\tilde X, \tilde d)be metric spaces, then
- a mapping
T: X \to \tilde Xis an isometry if\forall x, y \in X: \tilde d(Tx, Ty) = d(x,y).(X,d)and(\tilde X, \tilde d)are isometric if there exists a bijective isometryT: X \to \tilde X.
Hence, isometric spaces may differ at most by the nature of their points but are indistinguishable from the viewpoint of the metric.
Or in other words, the metric space (\tilde X, \tilde d) is unique up to isometry.
Theorem 1: for every metric space
(X,d)there exists a complete metric space(\tilde X, \tilde d)that contains a subsetWthat satisfies the following conditions
Wis a metric space isometric with(X,d).Wis dense inX.
??? note "Proof:"
Will be added later.