3.5 KiB
Matrix algebra
Theorem: let
A, BandCbe matrices and\alphaand\betabe scalars. Each of the following statements is valid
A + B = B + A,(A + B) + C = A + (B + C),(AB)C = A(BC),A(B + C) = AB + AC,(A + B)C = AC + BC,(\alpha \beta) A = \alpha(\beta A),\alpha (AB) = (\alpha A)B = A (\alpha) B,(\alpha + \beta)A = \alpha A + \beta A,\alpha (A + B) = \alpha A + \alpha B.
??? note "Proof:"
Will be added later.
In the case where an n \times n matrix A is multiplied by itself k times it is convenient to use exponential notation: AA \cdots A = A^k.
Definition: the
n \times nidentity matrix is the matrixI = (\delta_{ij}), where
\delta_{ij} = \begin{cases} 1 &\text{ if } i = j, \ 0 &\text{ if } i \neq j.\end{cases}
Obtaining for the multiplication of a n \times n matrix A with the identitiy matrix; A I = A.
Definition: an
n \times nmatrixAis said to be nonsingular or invertible if there exists a matrixA^{-1}such thatAA^{-1} = A^{-1}A = I. The matrixA^{-1}is said to be a multiplicative inverse ofA.
If B and C are both multiplicative inverses of A then
B = BI = B(AC) = (BA)C = IC = C,
thus a matrix can have at most one multiplicative inverse.
Definition: an
n \times nmatrix is said to be singular if it does not have a multiplicative inverse.
Or similarly, an n \times n matrix A is singular if A \mathbf{x} = \mathbf{0} for some non trivial \mathbf{x} \in \mathbb{R}^n \backslash \{\mathbf{0}\}. For a nonsingular matrix A, \mathbf{x} = \mathbf{0} is the only solution to A \mathbf{x} = \mathbf{0}.
Theorem: if
AandBare nonsingularn \times nmatrices, thenABis also nonsingular and
(AB)^{-1} = B^{-1} A^{-1}.
??? note "Proof:"
Let $A$ and $B$ be nonsingular $n \times n$ matrices. If we suppose $AB$ is nonsingular and $(AB)^{-1} = B^{-1} A^{-1}$ we have
$$
(AB)^{-1}AB = (B^{-1} A^{-1})AB = B^{-1} (A^{-1} A) B = B^{-1} B = I, \\
AB(AB)^{-1} = AB(B^{-1} A^{-1}) = A (B B^{-1}) A^{-1} = A A^{-1} = I.
$$
Theorem: let
Abe a nonsingularn \times nmatrix, the inverse ofAgiven byA^{-1}is nonsingular.
??? note "Proof:"
Let $A$ be a nonsingular $n \times n$ matrix, $A^{-1}$ its inverse and $\mathbf{x} \in \mathbb{R}^n$ a vector. Suppose $A^{-1} \mathbf{x} = \mathbf{0}$ then
$$
\mathbf{x} = I \mathbf{x} = (A A^{-1}) \mathbf{x} = A(A^{-1} \mathbf{x}) = \mathbf{0}.
$$
Theorem: let
Abe a nonsingularn \times nmatrix then the solution of the systemA\mathbf{x} = \mathbf{b}is\mathbf{x} = A^{-1} \mathbf{b}with\mathbf{x}, \mathbf{b} \in \mathbb{R}^n.
??? note "Proof:"
Let $A$ be a nonsingular $n \times n$ matrix, $A^{-1}$ its inverse and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ vectors. Suppose $\mathbf{x} = A^{-1} \mathbf{b}$ then we have
$$
A \mathbf{x} = A (A^{-1} \mathbf{b}) = (A A^{-1}) \mathbf{b} = \mathbf{b}.
$$
Corollary: the system
A \mathbf{x} = \mathbf{b}ofnlinear equations innunknowns has a unique solution if and only ifAis nonsingular.
??? note "Proof:"
The proof follows from the above theorem.
Theorem: let
AandBbe matrices and\alphaand\betabe scalars. Each of the following statements valid
(A^T)^T = A,(\alpha A)^T = \alpha A^T,(A + B)^T = A^T + B^T,(AB)^T = B^T A^T.
??? note "Proof:"
Will be added later.