port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,59 @@
|
|||
# Amplitude modulation
|
||||
|
||||
> *Theorem*: a multiplication of two harmonic functions results in a sum of harmonics withh the sum and difference of the original frequencies. This is called *heterodyne*.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
For example if we have a harmonic signal $m: \mathbb{R} \to \mathbb{R}$ with $\omega, A \in \mathbb{R}$ given by
|
||||
|
||||
$$
|
||||
m(t) = A \cos \omega t,
|
||||
$$
|
||||
|
||||
for all $t \in \mathbb{R}$ and a harmonic carrier signal $c: \mathbb{R} \to \mathbb{R}$ with $\omega_c \in \mathbb{R}$ given by
|
||||
|
||||
$$
|
||||
c(t) = \cos \omega_c t.
|
||||
$$
|
||||
|
||||
for all $t \in \mathbb{R}$. Then the multiplication of both is given by
|
||||
|
||||
$$
|
||||
m(t)c(t) = A \cos (\omega t) \cos (\omega_c t) = \frac{A}{2} \bigg(\cos t(\omega + \omega)c + \cos t(\omega - \omega_c) \bigg),
|
||||
$$
|
||||
|
||||
obtaining heterodyne.
|
||||
|
||||
> *Definition*: amplitude modulation makes use of a harmonic carrier signal $c: \mathbb{R} \to \mathbb{R}$ with a reasonable angular frequency $\omega_c \in \mathbb{R}$ given by
|
||||
>
|
||||
> $$
|
||||
> c(t) = \cos \omega_c t
|
||||
> $$
|
||||
>
|
||||
> for all $t \in \mathbb{R}$ to modulate a signal $m: \mathbb{R} \to \mathbb{R}$.
|
||||
|
||||
<br>
|
||||
|
||||
> *Theorem*: For the case that the carrier signal is not additionaly transmitted we obtain
|
||||
>
|
||||
> $$
|
||||
> m(t) c(t) \overset{\mathcal{F}}\longleftrightarrow \frac{1}{2} \big(M(\omega + \omega_c) + M(\omega - \omega_c) \big),
|
||||
> $$
|
||||
>
|
||||
> for all $t, \omega \in \mathbb{R}$.
|
||||
>
|
||||
> For the case that the carrier signal is additionaly transmitted we obtain
|
||||
>
|
||||
> $$
|
||||
> m(t) (1 + c(t)) \overset{\mathcal{F}}\longleftrightarrow \frac{1}{2} \Big(M(\omega + \omega_c) + M(\omega - \omega_c) + \pi \big(\delta(\omega + \omega_c) + \delta(\omega - \omega_c) \big) \Big)
|
||||
> $$
|
||||
>
|
||||
> for all $t, \omega \in \mathbb{R}$.
|
||||
>
|
||||
> Therefore multiple bandlimited signals can be transmitted simultaneously in frequency bands.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
Loading…
Add table
Add a link
Reference in a new issue