port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,95 @@
|
|||
# The maximum error
|
||||
|
||||
## Determining the transformed maximum error
|
||||
|
||||
In this section a method will be postulated and derived under certain assumptions to determine the maximum error, after a transformation with a map $f$.
|
||||
|
||||
> *Definition 1*: let $f: \mathbb{R}^n \to \mathbb{R} :(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \mapsto f(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \overset{.} = y \pm \Delta_y$ be a function that maps independent measurements with a corresponding maximum error to a new quantity $y$ with maximum error $\Delta_y$ for $n \in \mathbb{N}$.
|
||||
|
||||
In assumption that the maximum errors of the independent measurements are small the following may be posed.
|
||||
|
||||
> *Postulate 1*: let $f:(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \mapsto f(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \overset{.} = y \pm \Delta_y$, the maximum error $\Delta_y$ may be given by
|
||||
>
|
||||
> $$
|
||||
> \Delta_y = \sum_{i=1}^n | \partial_i f(x_1, \dots, x_n) | \Delta_{x_i},
|
||||
> $$
|
||||
>
|
||||
> and $y = f(x_1, \dots, x_n)$ correspondingly for all $(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \in \mathbb{R}^n$.
|
||||
|
||||
??? note "*Derivation*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
With this general expression the following properties may be derived.
|
||||
|
||||
### Properties
|
||||
|
||||
The sum of the independently measured quantities is posed in the following corollary.
|
||||
|
||||
> *Corollary 1*: let $f:(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \mapsto f(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \overset{.} = y \pm \Delta_y$ with $y$ given by
|
||||
>
|
||||
> $$
|
||||
> y = f(x_1, \dots, x_n) = x_1 + \dots x_n,
|
||||
> $$
|
||||
>
|
||||
> then the maximum error $\Delta_y$ may be given by
|
||||
>
|
||||
> $$
|
||||
> \Delta_y = \Delta_{x_1} + \dots + \Delta_{x_n},
|
||||
> $$
|
||||
>
|
||||
> for all $(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \in \mathbb{R}^n$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
The multiplication of a constant with the independently measured quantities is posed in the following corollary.
|
||||
|
||||
> *Corollary 2*: let $f:(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \mapsto f(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \overset{.} = y \pm \Delta_y$ with $y$ given by
|
||||
>
|
||||
> $$
|
||||
> y = f(x_1, \dots, x_n) = \lambda(x_1 + \dots x_n),
|
||||
> $$
|
||||
>
|
||||
> for $\lambda \in \mathbb{R}$ then the maximum error $\Delta_y$ may be given by
|
||||
>
|
||||
> $$
|
||||
> \Delta_y = |\lambda| (\Delta_{x_1} + \dots + \Delta_{x_n}),
|
||||
> $$
|
||||
>
|
||||
> for all $(x_1 \pm \Delta_{x_1}, \dots, x_n \pm \Delta_{x_n}) \in \mathbb{R}^n$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
The product of two independently measured quantities is posed in the following corollary.
|
||||
|
||||
> *Corollary 3*: let $f: (x_1 \pm \Delta_{x_1}, x_2 \pm \Delta_{x_2}) \mapsto f(x_1 \pm \Delta_{x_1}, x_2 \pm \Delta_{x_2}) \overset{.} = y \pm \Delta_y$ with $y$ given by
|
||||
>
|
||||
> $$
|
||||
> y = f(x_1, x_2) = x_1 x_2,
|
||||
> $$
|
||||
>
|
||||
> then the maximum error $\Delta_y$ may be given by
|
||||
>
|
||||
> $$
|
||||
> \Delta_y = \frac{\Delta_{x_1}}{|x_1|} + \frac{\Delta_{x_2}}{|x_2|},
|
||||
> $$
|
||||
>
|
||||
> for all $(x_1 \pm \Delta_{x_1}, x_2 \pm \Delta_{x_2}) \in \mathbb{R}^2$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Combining measurements
|
||||
|
||||
If by a measurement series $m \in \mathbb{N}$ values $\{y_1 \pm \Delta_{y_1}, \dots, y_m \pm \Delta_{y_m}\}$ have been found for the same quantity then
|
||||
|
||||
$$
|
||||
[y \pm \Delta_y] = \bigcap_{i \in \mathbb{N}[i \leq m]} [y_i \pm \Delta_{y_i}],
|
||||
$$
|
||||
|
||||
the overlap of all the intervals with $[y \pm \Delta_y]$ denoting the interval in which the real value exists.
|
Loading…
Add table
Add a link
Reference in a new issue