port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,30 @@
|
|||
# Momentum
|
||||
|
||||
> *Definition 1*: the **momentum** $\mathbf{p}$ of a particle is defined as the product of the mass and velocity of the particle
|
||||
>
|
||||
> $$
|
||||
> \mathbf{p} = m \mathbf{v},
|
||||
> $$
|
||||
>
|
||||
> with $m$ the mass of the particle and $\mathbf{v}$ the velocity of the particle.
|
||||
|
||||
For the case that $\mathbf{v}: t \to \mathbf{v}(t) \implies \mathbf{v}'(t) = \mathbf{a}(t)$ we have the following theorem.
|
||||
|
||||
> *Theorem 1*: let $\mathbf{v}$, $\mathbf{a}$ be the velocity and acceleration of a particle respectively, if we have
|
||||
>
|
||||
> $$
|
||||
> \mathbf{v}: t \to \mathbf{v}(t) \implies \forall t \in \mathbb{R}: \mathbf{v}'(t) = \mathbf{a}(t),
|
||||
> $$
|
||||
>
|
||||
> then
|
||||
>
|
||||
> $$
|
||||
> \mathbf{p}'(t) = \mathbf{F}(t),
|
||||
> $$
|
||||
>
|
||||
> for all $t \in \mathbb{R}$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue