port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
99
docs/mathematics/set-theory/recursion-induction.md
Normal file
99
docs/mathematics/set-theory/recursion-induction.md
Normal file
|
@ -0,0 +1,99 @@
|
|||
# Recursion and induction
|
||||
|
||||
## Recursion
|
||||
|
||||
A recursively defined function $f$ needs two ingredients:
|
||||
|
||||
* a *base*, where the function value $f(n)$ is defined, for some value of $n$.
|
||||
* a *recursion*, in which the computation of the function in $n$ is explained with the help of the previous values smaller than $n$.
|
||||
|
||||
For example, the sum
|
||||
|
||||
$$
|
||||
\begin{align*}&\sum_{i=1}^1 i = 1,\\ &\sum_{i=1}^{n+1} i = (n + 1) + \sum_{i=1}^{n} i.\end{align*}
|
||||
$$
|
||||
|
||||
Or the product
|
||||
|
||||
$$
|
||||
\begin{align*}&\prod_{i=0}^0 i = 1,\\ &\prod_{i=0}^{n+1} i = (n+1) \cdot \prod_{i=0}^{n} i.\end{align*}
|
||||
$$
|
||||
|
||||
## Induction
|
||||
|
||||
> *Principle* **- Natural induction**: suppose $P(n)$ is a predicate for $n \in \mathbb{Z}$, let $b \in \mathbb{Z}$. If the following holds
|
||||
>
|
||||
> * $P(b)$ is true,
|
||||
> * for all $k \in \mathbb{Z}$, $k \geq b$ we have that $P(k)$ implies $P(k+1)$.
|
||||
>
|
||||
> Then $P(n)$ is true for all $n \geq b$.
|
||||
|
||||
For example, we claim that $\forall n \in \mathbb{N}$ we have
|
||||
|
||||
$$
|
||||
\sum_{i=1}^n i = \frac{n}{2} (n+1).
|
||||
$$
|
||||
|
||||
We first check the claim for $n=1$:
|
||||
|
||||
$$
|
||||
\sum_{i=1}^1 i = \frac{1}{2} (1+1) = 1.
|
||||
$$
|
||||
|
||||
Now suppose that for some $k \in \mathbb{N}$
|
||||
|
||||
$$
|
||||
\sum_{i=1}^k i = \frac{k}{2} (k+1).
|
||||
$$
|
||||
|
||||
Then by assumption
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\sum_{i=1}^{k+1} i &= \sum_{i=1}^k i + (k+1), \\
|
||||
&= \frac{k}{2}(k+1) + (k+1), \\
|
||||
&= \frac{k+1}{2}(k+2).
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Hence if the claim holds for some $k \in \mathbb{N}$ then it also holds for $k+1$. The principle of natural induction implies now that $\forall n \in \mathbb{N}$ we have
|
||||
|
||||
$$
|
||||
\sum_{i=1}^n i = \frac{n}{2}(n+1).
|
||||
$$
|
||||
|
||||
> *Principle* **- Strong induction**: suppose $P(n)$ is a predicate for $n \in \mathbb{Z}$, let $b \in \mathbb{Z}$. If the following holds
|
||||
>
|
||||
> * $P(b)$ is true,
|
||||
> * for all $k \in \mathbb{Z}$ we have that $P(b), P(b+1), \dots, P(k-1)$ and $P(k)$ together imply $P(k+1)$.
|
||||
>
|
||||
> Then $P(n)$ is true for all $n \geq b$.
|
||||
|
||||
For example, we claim for the recursion
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
&a_1 = 1, \\
|
||||
&a_2 = 3, \\
|
||||
&a_n = a_{n-2} + 2 a_{n-1}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
that $a_n$ is odd $\forall n \in \mathbb{N}$.
|
||||
|
||||
We first check the claim for for $n=1$ and $n=2$, from the definition of the recursion it may be observed that the it is true.
|
||||
|
||||
Now suppose that for some $i \in \{1, \dots, k\}$ $a_i$ is odd.
|
||||
|
||||
Then by assumption
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
a_{k+1} &= a_{k-1} + 2 a_k, \\
|
||||
&= a_{k-1} + 2 a_{k} + 2(a_{k-2} + 2a_{k-1}), \\
|
||||
&= 2 (a_k + a_{k-2} + 2 a_{k-1}) + a_{k-1},
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
so $a_{k+1}$ is odd.
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue