port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
66
docs/mathematics/ordinary-differential-equations/first-order-ode.md
Executable file
66
docs/mathematics/ordinary-differential-equations/first-order-ode.md
Executable file
|
@ -0,0 +1,66 @@
|
|||
# First-order differential equations
|
||||
|
||||
## First-order linear differential equations
|
||||
|
||||
A first-order **linear** differential equation is one of the type
|
||||
|
||||
$$
|
||||
\frac{dy}{dx} + p(x) y = q(x).
|
||||
$$
|
||||
|
||||
where $p(x)$ and $q(x)$ are given functions, which may be assumed to be continuous. The equation is called **nonhomogeneous** unless $q(x)$ is dentically zero. The corresponding **homogeneous** equation
|
||||
|
||||
$$
|
||||
\frac{dy}{dx} + p(x)y = 0,
|
||||
$$
|
||||
|
||||
is separable and so is easily solved. By seperation of variables
|
||||
|
||||
$$
|
||||
\frac{dy}{dx} = -p(x)y \implies \int \frac{1}{y}dy = \int p(x)dx.
|
||||
$$
|
||||
|
||||
Though, pay attention to absolute values.
|
||||
|
||||
There are two methods for solving nonhomogeneous equations.
|
||||
|
||||
### Integration factor
|
||||
|
||||
The first method is by using an integrating factor. Let $\mu(x)$ be an antiderivative of $p(x)$ and multiply the equation by $e^{\mu(x)}$.
|
||||
|
||||
$$
|
||||
\begin{array}{ll}
|
||||
e^{\mu(x)} \frac{dy}{dx} + e^{\mu(x)} p(x) y = e^{\mu(x)} q(x) &\implies \frac{d}{dx}(e^{\mu(x)} y) = q(x) e^{\mu(x)}, \\
|
||||
&\implies e^{\mu(x)} y = \int q(x) e^{\mu(x)}dx, \\
|
||||
&\implies y(x) = e^{-\mu(x)} \int q(x) e^{\mu(x)}dx.
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
### Variation of the constant
|
||||
|
||||
The second method is by using a variation of a constant. Let $\mu(x)$ be an antiderivative of $p(x)$ and solve the homegeneous equation
|
||||
|
||||
$$
|
||||
\frac{dy}{dx} + p(x)y = 0 \implies y(x) = k e^{-\mu(x)}.
|
||||
$$
|
||||
|
||||
Try:
|
||||
|
||||
$$
|
||||
y'(x) + p(x) y(x) = q(x) = k'(x) e^{\mu(x)},
|
||||
$$
|
||||
|
||||
thus $k'(x) = q(x) e^{\mu(x)}$.
|
||||
|
||||
#### Example
|
||||
|
||||
Solve $\frac{dy}{dx} + 2xy = x$ with $y(0) = 3$.
|
||||
|
||||
|
||||
First solving the homogeneous equation
|
||||
|
||||
$$
|
||||
\begin{array}{ll}
|
||||
\frac{dy}{dx} + 2xy = 0 &\implies \int \frac{1}{y} dy = -2\int xdx
|
||||
\end{array}
|
||||
$$
|
Loading…
Add table
Add a link
Reference in a new issue