port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,39 @@
|
|||
# Taylor polynomials
|
||||
|
||||
For $D \subseteq \mathbb{R}^n$ let $f: D \to \mathbb{R}$ sufficiently often differentiable, we have $\mathbf{a} \in D$. Find a polynomial $T: \mathbb{R}^n \to \mathbb{R}$ such that
|
||||
|
||||
$$
|
||||
\partial^\beta T(\mathbf{a}) = \partial^\beta f(\mathbf{a}).
|
||||
$$
|
||||
|
||||
Ansatz: let $T(\mathbf{x}) = \sum_{|\alpha| \leq n} c_\alpha (\mathbf{x} - \mathbf{a})^\alpha$. Then
|
||||
|
||||
$$
|
||||
\partial^\beta T(\mathbf{x}) = \sum_{|\alpha| \leq n,\; \alpha \geq \beta} c_\alpha \frac{\alpha!}{(\alpha - \beta)!} (\mathbf{x} - \mathbf{a})^{\alpha - \beta}.
|
||||
$$
|
||||
|
||||
Choose $\mathbf{x} = \mathbf{a}$: $\partial^\beta T(\mathbf{a}) = c_\beta \beta! = \partial^\beta f(\mathbf{a}) \implies c_\beta = \frac{\partial^\beta f(\mathbf{a})}{\beta!}$. Therefore we obtain
|
||||
|
||||
$$
|
||||
T(\mathbf{x}) = \sum_{|\alpha| \leq n} \frac{\partial^\alpha f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^\alpha.
|
||||
$$
|
||||
|
||||
*Theorem*: suppose $x \in D$ and the line segment $[\mathbf{a},\mathbf{x}]$ lies completely in $D$. Set $\mathbf{h} = \mathbf{x} - \mathbf{a}$. Then there is a $\theta \in (0,1)$ such that
|
||||
|
||||
$$
|
||||
f(\mathbf{x}) = T(\mathbf{x}) + \frac{1}{(n+1)!} \partial_\mathbf{h}^{n+1} f(\mathbf{a} + \theta \mathbf{h}).
|
||||
$$
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Apply Taylor’s theorem in 1D and the chain rule to the function $\phi : [0, 1] \to \mathbb{R}$ given by
|
||||
|
||||
$$
|
||||
\phi(\theta) := f(\mathbf{a} + \theta \mathbf{h}).
|
||||
$$
|
||||
|
||||
## Other methods
|
||||
|
||||
Creating multivariable Taylor polynomials by using 1D Taylor polynomials of the different variables and composing them.
|
||||
|
||||
### Example
|
Loading…
Add table
Add a link
Reference in a new issue