port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,21 @@
|
|||
# Limits and continuity
|
||||
|
||||
## Limit
|
||||
|
||||
*Definition*: let $D \subseteq \mathbb{R}^m$ and let $f: D \to \mathbb{R}^n$, with $m,n \in \mathbb{N}$. Let $\mathbf{a}$ be the point $\mathbf{x}$ approaches, then $f$ approaches the limit $L \in \mathbb{R}^n$
|
||||
|
||||
$$
|
||||
\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = L \iff \forall \varepsilon_{>0} \exists \delta_{>0} \Big[0 < \|\mathbf{x} - \mathbf{a}\|< \delta \implies \|f(\mathbf{x}) - L\| < \varepsilon \Big],
|
||||
$$
|
||||
|
||||
with $\mathbf{a}, \mathbf{x} \in \mathbb{R}^m$.
|
||||
|
||||
## Continuity
|
||||
|
||||
*Definition*: let $D \subseteq \mathbb{R}^m$ and let $f: D \to \mathbb{R}^n$, with $m,n \in \mathbb{N}$. Then $f$ is called continuous at $\mathbf{a}$ if
|
||||
|
||||
$$
|
||||
\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}),
|
||||
$$
|
||||
|
||||
with $\mathbf{a}, \mathbf{x} \in \mathbb{R}^m$.
|
Loading…
Add table
Add a link
Reference in a new issue