port from mathematics-physics notes

This commit is contained in:
Luc Bijl 2025-08-26 15:48:53 +02:00
parent a4e106ce02
commit c009ea53f0
124 changed files with 13224 additions and 0 deletions

View file

@ -0,0 +1,21 @@
# Limits and continuity
## Limit
*Definition*: let $D \subseteq \mathbb{R}^m$ and let $f: D \to \mathbb{R}^n$, with $m,n \in \mathbb{N}$. Let $\mathbf{a}$ be the point $\mathbf{x}$ approaches, then $f$ approaches the limit $L \in \mathbb{R}^n$
$$
\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = L \iff \forall \varepsilon_{>0} \exists \delta_{>0} \Big[0 < \|\mathbf{x} - \mathbf{a}\|< \delta \implies \|f(\mathbf{x}) - L\| < \varepsilon \Big],
$$
with $\mathbf{a}, \mathbf{x} \in \mathbb{R}^m$.
## Continuity
*Definition*: let $D \subseteq \mathbb{R}^m$ and let $f: D \to \mathbb{R}^n$, with $m,n \in \mathbb{N}$. Then $f$ is called continuous at $\mathbf{a}$ if
$$
\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}),
$$
with $\mathbf{a}, \mathbf{x} \in \mathbb{R}^m$.