port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
55
docs/mathematics/multivariable-calculus/integration.md
Normal file
55
docs/mathematics/multivariable-calculus/integration.md
Normal file
|
@ -0,0 +1,55 @@
|
|||
# Integration
|
||||
|
||||
*Theorem*: for $D \subseteq \mathbb{R}^n$ ($n=2$ for simplicity) with $D = X \times Y$, let $f: D \to \mathbb{R}$ then we have
|
||||
|
||||
$$
|
||||
\iint_D f = \int_X \Big(\int_Y f(x,y)dy \Big)dx = \int_Y \Big(\int_X f(x,y)dx \Big)dy
|
||||
$$
|
||||
|
||||
implying that order can be interchanged, this is true for $n \in \mathbb{N}$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Iteration of integrals
|
||||
|
||||
*Theorem*: for $D \subseteq \mathbb{R}^n$ ($n=2$ for simplicity) bounded and piecewise smooth boundary, let $f: D \to \mathbb{R}$ be bounded and continuous. Let $R$ be a rectangle with $D \subseteq R$ then
|
||||
|
||||
$$
|
||||
\iint_D f dA = \iint_R F dA, \qquad \text{where } F(\mathbf{x}) = \begin{cases} F(\mathbf{x}) \quad &\mathbf{x} \in D, \\ 0 \quad &\mathbf{x} \notin D. \end{cases}
|
||||
$$
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Coordinate transformation for integrals
|
||||
|
||||
*Theorem*: for $D \subseteq \mathbb{R}^n$ ($n=2$ for simplicity) bounded and piecewise smooth boundary, let $f: D \to \mathbb{R}$ be bounded and continuous and let $\phi: D \to \mathbb{R}^n$ be continuously differentiable and injective, define
|
||||
|
||||
$$
|
||||
E := \phi(D),
|
||||
$$
|
||||
|
||||
then we have
|
||||
|
||||
$$
|
||||
\iint_D f = \iint_E f \circ \phi \;\Big|\mathrm{det} \big(D_\phi \big) \Big|,
|
||||
$$
|
||||
|
||||
with $D_\phi$ the Jacobian of $\phi$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
### Example
|
||||
|
||||
Let $D = \big\{(x,y) \in \mathbb{R}^2 \;\big|\; x^2 + y^2 \leq 4 \land 0 \leq y \leq x \big\}$ and let $\phi: D \to \mathbb{R}^2$ be given by
|
||||
|
||||
$$
|
||||
\phi(r,\theta) = \begin{pmatrix} r\cos \theta \\ r\sin \theta \end{pmatrix},
|
||||
$$
|
||||
|
||||
define $E := \phi(D) = [0,2] \times [0, \frac{\pi}{4}]$. Then $E$ is a rectangle which can be more easily integrated.
|
Loading…
Add table
Add a link
Reference in a new issue