port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
63
docs/mathematics/differential-geometry/curvature.md
Normal file
63
docs/mathematics/differential-geometry/curvature.md
Normal file
|
@ -0,0 +1,63 @@
|
|||
# Curvature
|
||||
|
||||
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
|
||||
|
||||
## Curvature operator
|
||||
|
||||
> *Definition 1*: the **curvature operator** $\Omega: \Gamma(\mathrm{TM})^3 \to \Gamma(\mathrm{TM})$ is defined as
|
||||
>
|
||||
> $$
|
||||
> \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u} = [\nabla_\mathbf{v}, \nabla_\mathbf{w}] \mathbf{u} - \nabla_{[\mathbf{v}, \mathbf{w}]}\mathbf{u},
|
||||
> $$
|
||||
>
|
||||
> for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$ with $[\cdot, \cdot]$ denoting the [Lie bracket]().
|
||||
|
||||
It then follows from the definition that the curvature operator $\Omega$ can be decomposed.
|
||||
|
||||
> *Proposition 1*: the decomposition of the curvature operator $\Omega$ relative to a basis $\{\partial_i\}_{i=1}^n$ of $\Gamma(\mathrm{TM})$ results into
|
||||
>
|
||||
> $$
|
||||
> \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u} = v^i w^j [D_i, D_j] u^l \partial_l,
|
||||
> $$
|
||||
>
|
||||
> for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Curvature tensor
|
||||
|
||||
> *Definition 2*: the **Riemann curvature tensor** $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ is defined as
|
||||
>
|
||||
> $$
|
||||
> \mathbf{R}(\bm{\omega}, \mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{k}(\bm{\omega}, \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u}),
|
||||
> $$
|
||||
>
|
||||
> for all $\bm{\omega} \in \Gamma(\mathrm{T}^*\mathrm{M})$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$.
|
||||
|
||||
The Riemann curvature defines the curvature of the differential manifold at a certain point $x \in \mathrm{M}$.
|
||||
|
||||
> *Proposition 2*: let $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ be the Riemann curvature tensor, with its decomposition given by
|
||||
>
|
||||
> $$
|
||||
> \mathbf{R} = R^i_{jkl} \partial_i \otimes dx^j \otimes dx^k \otimes dx^l,
|
||||
> $$
|
||||
>
|
||||
> then we have that its holor is given by
|
||||
>
|
||||
> $$
|
||||
> R^i_{jkl} = \partial_k \Gamma^i_{jl} + \Gamma^m_{jl} \Gamma^i_{mk} - \partial_k \Gamma^i_{jk} - \Gamma^m_{jk} \Gamma^i_{ml},
|
||||
> $$
|
||||
>
|
||||
> for all $(i,j,k,l) \in \{1, \dots, n\}^4$ with $\Gamma^i_{jk}$ denoting the linear connection symbols.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
It may then be observed that $R^i_{jkl} = - R^i_{jlk}$ such that
|
||||
|
||||
$$
|
||||
\mathbf{R} = \frac{1}{2} R^i_{jkl} \partial_i \otimes dx^j \otimes (dx^k \wedge dx^l).
|
||||
$$
|
Loading…
Add table
Add a link
Reference in a new issue