port from mathematics-physics notes

This commit is contained in:
Luc Bijl 2025-08-26 15:48:53 +02:00
parent a4e106ce02
commit c009ea53f0
124 changed files with 13224 additions and 0 deletions

View file

@ -0,0 +1,63 @@
# Curvature
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Curvature operator
> *Definition 1*: the **curvature operator** $\Omega: \Gamma(\mathrm{TM})^3 \to \Gamma(\mathrm{TM})$ is defined as
>
> $$
> \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u} = [\nabla_\mathbf{v}, \nabla_\mathbf{w}] \mathbf{u} - \nabla_{[\mathbf{v}, \mathbf{w}]}\mathbf{u},
> $$
>
> for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$ with $[\cdot, \cdot]$ denoting the [Lie bracket]().
It then follows from the definition that the curvature operator $\Omega$ can be decomposed.
> *Proposition 1*: the decomposition of the curvature operator $\Omega$ relative to a basis $\{\partial_i\}_{i=1}^n$ of $\Gamma(\mathrm{TM})$ results into
>
> $$
> \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u} = v^i w^j [D_i, D_j] u^l \partial_l,
> $$
>
> for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$.
??? note "*Proof*:"
Will be added later.
## Curvature tensor
> *Definition 2*: the **Riemann curvature tensor** $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ is defined as
>
> $$
> \mathbf{R}(\bm{\omega}, \mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{k}(\bm{\omega}, \Omega(\mathbf{v}, \mathbf{w}) \mathbf{u}),
> $$
>
> for all $\bm{\omega} \in \Gamma(\mathrm{T}^*\mathrm{M})$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Gamma(\mathrm{TM})$.
The Riemann curvature defines the curvature of the differential manifold at a certain point $x \in \mathrm{M}$.
> *Proposition 2*: let $\mathbf{R}: \Gamma(\mathrm{T}^*\mathrm{M}) \times \Gamma(\mathrm{TM})^3 \to \mathbb{K}$ be the Riemann curvature tensor, with its decomposition given by
>
> $$
> \mathbf{R} = R^i_{jkl} \partial_i \otimes dx^j \otimes dx^k \otimes dx^l,
> $$
>
> then we have that its holor is given by
>
> $$
> R^i_{jkl} = \partial_k \Gamma^i_{jl} + \Gamma^m_{jl} \Gamma^i_{mk} - \partial_k \Gamma^i_{jk} - \Gamma^m_{jk} \Gamma^i_{ml},
> $$
>
> for all $(i,j,k,l) \in \{1, \dots, n\}^4$ with $\Gamma^i_{jk}$ denoting the linear connection symbols.
??? note "*Proof*:"
Will be added later.
It may then be observed that $R^i_{jkl} = - R^i_{jlk}$ such that
$$
\mathbf{R} = \frac{1}{2} R^i_{jkl} \partial_i \otimes dx^j \otimes (dx^k \wedge dx^l).
$$

View file

@ -0,0 +1,60 @@
# Derivatives
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Lie derivative
> *Definition 1*: the **Lie derivative** on a section of a tangent bundle $\mathscr{L}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to \Gamma(\mathrm{TM})$ is a map defined by
>
> $$
> \mathscr{L}_\mathbf{w} \mathbf{v} = \mathbf{w} \circ \mathbf{v} - \mathbf{v} \circ \mathbf{w} = [\mathbf{w}, \mathbf{v}],
> $$
>
> for all $\mathbf{w}, \mathbf{v} \in \Gamma(\mathrm{TM})$.
In which the bracket formulation is also referred to as the Lie bracket.
> *Proposition 1*: the Lie derivative can be decomposed into
>
> $$
> \mathscr{L}_\mathbf{w} \mathbf{v} = \mathscr{L}_\mathbf{w}^i \mathbf{v} \partial_i = (w^j \partial_j v^i - v^j \partial_j w^i) \partial_i,
> $$
>
> for all $\mathbf{w}, \mathbf{v} \in \Gamma(\mathrm{TM})$.
??? note "*Proof*:"
Will be added later.
## Exterior derivative
> *Definition 2*: the **exterior derivative** $d: \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big) \to \Gamma \big(\bigwedge_{k+1}(\mathrm{T}\mathrm{M}) \big)$ of a $k$-form field, $k \in \mathbb{N}[k \leq n]$ is the $(k+1)$-form field
>
> $$
> \begin{align*}
> d \bm{\omega} &= d \omega_{|i_1 \dots i_k|} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}, \\
> &= \partial_j \omega_{|i_1 \dots i_k|} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k},
> \end{align*}
> $$
>
> for all $\bm{\omega} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big)$.
From the definition of the exterior definition the following results arises.
> *Theorem 1*: we have that
>
> 1. $\forall\bm{\omega} \in \Gamma \big(\bigwedge_n(\mathrm{T}\mathrm{M}) \big): d \bm{\omega} = \mathbf{0}$,
> 2. $\forall\bm{\omega} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big), k \in \mathbb{N}[k \leq n]: d^2 \bm{\omega} = \mathbf{0}$.
??? note "*Proof*:"
Will be added later.
## Hodge star operator
> *Definition 3*: the **hodge star operator** $*: \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big) \to \Gamma \big(\bigwedge_{n-k}(\mathrm{T}\mathrm{M}) \big)$ with $k \in \mathbb{N}[k \leq n]$ has the following properties
>
> 1. $\forall \bm{\omega} \in \Gamma \big(\bigwedge_0(\mathrm{T}\mathrm{M}) \big): * \bm{\omega} = \bm{\epsilon}$,
> 2. $* (dx^{i_1} \wedge \dots \wedge dx^{i_k}) = \bm{\epsilon} \lrcorner \mathbf{g}^{-1}(dx^{i_1}) \lrcorner \dots \lrcorner \mathbf{g}^{-1}(dx^{i_k})$,
>
> for all $dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Gamma \big(\bigwedge_k(\mathrm{T}\mathrm{M}) \big)$ with $\bm{\epsilon}$ the Levi-Civita tensor $\bm{\epsilon} \in \big(\bigwedge_n(\mathrm{T}\mathrm{M}) \big)$ and $\mathbf{g}^{-1}: \Gamma(\mathrm{T}^*\mathrm{M}) \to \Gamma(\mathrm{T}\mathrm{M})$ the [dual metric]().

View file

@ -0,0 +1,41 @@
# Differential manifolds
In the following sections of differential geometry we make use of the Einstein summation convention introduced in [vector analysis](/en/physics/mathematical-physics/vector-analysis/curvilinear-coordinates/) and $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}.$
## Definition
Differential geometry is concerned with *differential manifolds*, smooth continua that are locally Euclidean.
> *Definition 1*: let $n \in \mathbb{N}$, a $n$-dimensional **differential manifold** is a Hausdorff (T2) space $M$ furnished with a family of smooth diffeomorphisms $\phi_\alpha: \mathscr{D}(\phi_\alpha) \to \mathscr{R}(\phi_\alpha)$ with $\mathscr{D}(\phi_\alpha) \subset\mathrm{M}$ and $\mathscr{R}(\phi_\alpha) \subset E$, with the following axioms
>
> 1. $\mathscr{D}(\phi_\alpha)$ is open and $\bigcup_{\alpha \in \mathbb{N}} \mathscr{D}(\phi_\alpha) =\mathrm{M}$,
> 2. if $\Omega = \mathscr{D}(\phi_\alpha) \cap \mathscr{D}(\phi_\beta) \neq \empty$ then $\phi_\alpha(\Omega), \phi_\beta(\Omega) \subset E$ are open sets and $\phi_\alpha \circ \phi_\beta^{-1}, \phi_\beta \circ \phi_\alpha$ are diffeomorphisms,
> 3. the atlas $\mathscr{A} = \{(\mathscr{D}(\phi_\alpha), \phi_\alpha)\}$ is maximal.
>
> with $E$ a $n$-dimensional [Euclidean space]().
The last axiom ensures that any chart is tacitly assumed to be already contained in the atlas.
## Coordinate transformations
> *Definition 2*: let $p,q \in \mathrm{M}$ be points on the differential manifold and let $\psi: \mathscr{D}(\psi) \to\mathrm{M}: p \mapsto \psi(p) \overset{\text{def}}{=} q$ be a **transformation** from $p$ to $q$ on the manifold, we define two diffeomorphisms
>
> $$
> \phi_\alpha: \mathscr{D}(\phi_\alpha) \to \mathscr{R}(\phi_\alpha): p \mapsto \phi_\alpha(p) \overset{\text{def}}{=} x,
> $$
>
> $$
> \phi_\beta: \mathscr{D}(\phi_\beta) \to \mathscr{R}(\phi_\beta): q \mapsto \phi_\beta(q) \overset{\text{def}}{=} y,
> $$
>
> with $\mathscr{D}(\phi_{\alpha,\beta}) \subset\mathrm{M}$ and $\mathscr{R}(\phi_{\alpha,\beta}) \subset E$. Then we have a **coordinate transformation** given by
>
> $$
> \phi_{\alpha \beta}^\psi = \phi_\beta \circ \psi \circ \phi_\alpha^{-1}: x \mapsto y,
> $$
>
> then $\phi_{\alpha \beta}^\psi$ is an **active transformation** if $p \neq q$ and $\phi_{\alpha \beta}^\psi$ is a **passive transformation** if $p = q$.
To clarify the definitions, a passive transformation corresponds only to a descriptive transformation. Whereas an active transformation corresponds to a transformation on the manifold $M$.
A passive transformation may also be given directly by $\phi_\beta \circ \phi_\alpha: x \mapsto y$ since $\psi = \mathrm{id}$ in this case. Note that the definitions could also have been given by the inverse as the transformations are all diffeomorphisms.

View file

@ -0,0 +1,47 @@
# Lengths and volumes
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Riemannian geometry
> *Definition 1*: the length of a vector $\mathbf{v} \in \Gamma(\mathrm{TM})$ is defined by the norm $\|\cdot\|$ induced by the inner product $\bm{g}$ such that
>
> $$
> \|\mathbf{v}\| = \sqrt{\bm{g}(\mathbf{v},\mathbf{v})}.
> $$
In the context of a smooth curve $\mathbf{v}: \mathscr{D}(\mathbf{v}) \to \Gamma(\mathrm{TM}):t \mapsto \mathbf{v}(t)$ parameterized by an open interval $\mathscr{D}(\mathbf{v}) \subset \mathbb{R}$, the length $l_{12}$ of a closed section $[t_1, t_2] \subset \mathbb{R}$ of this curve is given by
$$
\begin{align*}
l_{12} &= \int_{t_1}^{t_2} \|\mathbf{\dot v}(t)\| dt, \\
&= \int_{t_1}^{t_2} \sqrt{\bm{g}(\mathbf{\dot v},\mathbf{\dot v})} dt, \\
&= \int_{t_1}^{t_2} \sqrt{g_{ij} \dot v^i \dot v^j} dt,
\end{align*}
$$
with $\mathbf{\dot v} = \dot v^i \partial_i \in \Gamma(\mathrm{TM})$.
> *Definition 2*: the volume $V$ span by the vectors $\{\mathbf{v}_i\}_{i=1}^n$ in $\Gamma(\mathrm{TM})$ is defined by
>
> $$
> V = \bm{\epsilon}(\mathbf{v}_1, \dots, \mathbf{v}_n) = \sqrt{g} \bm{\mu}(\mathbf{v}_1, \dots, \mathbf{v}_n),
> $$
>
> with $\bm{\epsilon}$ the unique unit volume form.
In the context of a subspace $S \subset M$ with $\dim S = k \in \mathbb{N}[k \leq n]$, the volume $V$ is given by
$$
V = \int_S \bm{\epsilon} = \int_S \sqrt{g} dx^1 \dots dx^k.
$$
It follows that for $k=1$
$$
\int_S \bm{\epsilon} = \int_S \sqrt{\bm{g}}.
$$
## Finsler geometry
Will be added later.

View file

@ -0,0 +1,146 @@
# Linear connections
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
> *Definition 1*: a **linear connection** on the fiber bundle $\mathscr{B}$ is a map
>
> $$
> \nabla: \Gamma(\mathrm{TM}) \times \Gamma(\mathscr{B}) \to \Gamma(\mathscr{B}): (\mathbf{v}, \mathbf{T}) \mapsto \nabla_\mathbf{v} \mathbf{T},
> $$
>
> satisfying the following properties, if $f,g \in C^\infty(\mathrm{M})$, $\mathbf{v} \in \Gamma(\mathrm{TM})$ and $\mathbf{T}, \mathbf{S} \in \Gamma(\mathscr{B})$ then
>
> 1. $\nabla_{f\mathbf{v}} \mathbf{T} = f \nabla_\mathbf{v} \mathbf{T}$
> 2. $\nabla_\mathbf{v} (f \mathbf{T} + g \mathbf{S}) = (\nabla_\mathbf{v} f) \mathbf{T} + f \nabla_\mathbf{v} \mathbf{T} + (\nabla_\mathbf{v} g) \mathbf{S} + g \nabla_{\mathbf{v}} \mathbf{S}$,
> 3. $\nabla_\mathbf{v} f = \mathbf{v} f = \mathbf{k}(df, \mathbf{v})$.
From property 3 it becomes clear that $\nabla_\mathbf{v}$ is an analogue of a directional derivative. The linear connection can also be defined in terms of the cotangent bundle and the dual fiber bundle.
Note that the first (trivial) element in the notion of the section $\Gamma$ is omitted, generally it should be $\Gamma(\mathrm{M}, \mathrm{TM})$ as the elements of this set are maps from $\mathrm{M}$ to $\mathrm{TM}$.
## Covariant derivative
> *Definition 2*: let $\mathbf{v} = v^i \mathbf{e}_i\in \Gamma(\mathscr{B})$ then the **covariant derivative** on $\mathbf{v}$ is defined as
>
> $$
> D_k \mathbf{v} \overset{\text{def}}= \nabla_{\partial_k} \mathbf{v} = (\partial_k v^i) \mathbf{e}_i + v^i \Gamma^j_{ik} \mathbf{e}_j = (\partial_k v^i + \Gamma^i_{jk} v^j)\mathbf{e}_i,
> $$
>
> with formally $\mathbf{k}(\mathbf{\hat e}^j, \nabla_{\partial_k} \mathbf{e}_i) = \Gamma^j_{ik}$ the **linear connection symbols**, in this case $\nabla_{\partial_k} \mathbf{e}_i = \Gamma^j_{ik} \mathbf{e}_j$.
The covariant derivative can thus be seen as a linear connection for which only the basis is used of the tangent vector. The covariant derivative can also be applied on higher, mixed rank tensors $\mathbf{T} = T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k \in \Gamma(\mathscr{B})$ which obtains
$$
D_l \mathbf{T} = (\partial_l T^{ij}_k) \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k + T^{ij}_k (\Gamma_{il}^m\mathbf{e}_m) \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k + T^{ij}_k \mathbf{e}_i \otimes (\Gamma^m_{jl} \mathbf{e}_m) \otimes \mathbf{\hat e}^k + T^{ij}_k \mathbf{e}_i \otimes \mathbf{e}_j \otimes (\hat \Gamma^k_{ml} \mathbf{\hat e}^m),
$$
with the dual linear connection symbols given by $\mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}$ with $\nabla_{\partial_k} \mathbf{\hat e}^i = \hat \Gamma^j_{ik} \mathbf{\hat e}^j$. We then have the following proposition such that we can simplify the above expression.
> *Proposition 1*: let $\Gamma^j_{ik}$ be the linear connection symbols of a covariant derivative and let $\hat \Gamma^j_{ik}$ be the dual linear connection symbols given by $\mathbf{k}(\nabla_{\partial_k} \mathbf{\hat e}^i, \mathbf{e}_j) = \hat \Gamma^j_{ik}$, then we have that
>
> $$
> \hat \Gamma^j_{ik} = - \Gamma^j_{ik},
> $$
>
> for all $(i,j,k) \in \mathbb{N}^3$.
??? note "*Proof*:"
Will be added later.
With the result of proposition 1 we may write
$$
D_l \mathbf{T} = (\partial_l T^{ij}_k + \Gamma_{ml}^i T^{mj}_k + \Gamma_{ml}^j T^{im}_k - \Gamma_{kl}^m T^{ij}_m) \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{\hat e}^k.
$$
### Transformation of linear connection symbols
Will be added later.
## Intrinsic derivative
> *Definition 3*: let $\gamma: \mathscr{D}(\gamma) \to M: t \mapsto \gamma(t)$ be a smooth curve on the manifold parameterized by an open interval $\mathscr{D}(\gamma) \subset \mathbb{R}$ and let $\mathbf{v}: \mathscr{D}(\gamma) \to \mathrm{TM}: t \mapsto \mathbf{v}(t) = \mathbf{u} \circ \gamma(t)$ be a vector field defined along the curve with $\mathbf{u} \in \Gamma(\mathrm{TM})$, the **intrinsic derivative** of $\mathbf{v}$ is defined as
>
> $$
> D_t \mathbf{v}(t) = \nabla_{\dot\gamma} \mathbf{v}(t),
> $$
>
> for all $t \in \mathscr{D}(\gamma)$.
By decomposition of $\dot \gamma = \dot \gamma^i \partial_i$ and $\mathbf{v} = v^i \partial_i$ and using the chain rule we obtain
$$
\begin{align*}
\nabla_{\dot\gamma} \mathbf{v}(t) &= \dot \gamma^i \nabla_{\partial_i} (v^j \partial_j), \\
&= \dot \gamma^i \big((\partial_i v^j) \partial_j + v^j \Gamma_{ji}^k \partial_k \big), \\
&= (\dot \gamma^i \partial_i v^j + \dot \gamma^i \Gamma^j_{ki}v^k) \partial_j, \\
&= (\dot v^j + \Gamma^j_{ki} v^k \dot \gamma^i) \partial_j,
\end{align*}
$$
for all $t \in \mathscr{D}(\gamma)$. This notion of the intrinsic derivative can of course be extended to any tensor.
### Parallel transport
> *Definition 4*: let $\gamma: \mathscr{D}(\gamma) \to M: t \mapsto \gamma(t)$ be a smooth curve on the manifold parameterized by an open interval $\mathscr{D}(\gamma) \subset \mathbb{R}$ and let $\mathbf{v}: \mathbb{R} \to \mathrm{TM}: t \mapsto \mathbf{v}(t) = \mathbf{u} \circ \gamma(t)$ be a vector field defined along the curve with $\mathbf{u} \in \mathrm{TM}$, then **parallel transport** of $\mathbf{v}$ along the curve is defined as
>
> $$
> D_t \mathbf{v}(t) = \mathbf{0},
> $$
>
> for all $t \in \mathscr{D}(\gamma)$.
Parallel transport implies the transport of a vector that is held constant along the path; constant direction and magnitude. It then follows that for $\dot \gamma = \dot \gamma^i \partial_i$ and $\mathbf{v} = v^i \partial_i$ parallel transport obtains
$$
D_t \mathbf{v}(t) = (\dot v^j + \Gamma^j_{ki} v^k \dot \gamma^i) \partial_j = \mathbf{0},
$$
obtaining the equations
$$
\dot v^j + \Gamma^j_{ki} v^k \dot \gamma^i = 0,
$$
such that
$$
\dot v^j = - \Gamma^j_{ki} v^k \dot \gamma^i,
$$
for all $t \in \mathscr{D}(\gamma)$. These equations can be solved for $\gamma$, obtaining the curve under which $\mathbf{v}$ stays constant.
If we let $\mathbf{v} = \dot \gamma^i \partial_i$ be the tangent vector along the curve then parallel transport of $\mathbf{v}$ preserves the tangent vector and we obtain the **geodesic equations** given by
$$
\dot v^j + \Gamma^j_{ki} v^k \dot \gamma^i = \ddot\gamma^j + \Gamma^j_{ki} \dot\gamma^k \dot\gamma^i = 0,
$$
for all $t \in \mathscr{D}(\gamma)$.
One may interpret a geodesic as a generalization of the notion of a straight line or shortest path defined by $\gamma$. As follows from the following proposition.
> *Proposition 2*: let $\gamma: \mathscr{D}(\gamma) \to M: t \mapsto \gamma(t)$ be a smooth curve on the manifold parameterized by an open interval $\mathscr{D}(\gamma) \subset \mathbb{R}$ and let $\mathscr{L}$ be the Lagrangian defined by
>
> $$
> \mathscr{L} = \|\dot \gamma\|^2,
> $$
>
> for all $t \in \mathscr{D}(\gamma)$. By demanding [Hamilton's principle]() we obtain the geodesic equations
>
> $$
> \ddot\gamma^j + \Gamma^j_{ki} \dot\gamma^k \dot\gamma^i = 0,
> $$
>
> for all $t \in \mathscr{D}(\gamma)$.
??? note "*Proof*:"
Will be added later.
It may be observed that by demanding the stationary state of the length of the curve we obtain the geodesic equations.
## Contravariant derivative
Will be added later.

View file

@ -0,0 +1,136 @@
# Tangent spaces
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section.
## Definition
> *Definition 1*: let $f \in C^{\infty}(\mathrm{M})$ with $C^{\infty}$ the class of [smooth functions]() and $M$ a differential manifold. A derivation of $f$ at $x \in \mathrm{M}$ is defined as a linear map $\mathbf{v}_x: C^\infty(\mathrm{M}) \to \mathbb{K}$ that satisfies
>
> $$
> \forall f,g \in C^{\infty}(\mathrm{M}): \mathbf{v}_x(f g) = (\mathbf{v}_xf) g + f (\mathbf{v}_x g).
> $$
>
> Let $\mathrm{T}_x\mathrm{M}$ be the set of all derivations at $x$ such that $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$. With $\mathrm{T}_x\mathrm{M}$ denoted as the **tangent space** at $x$.
We may think of the tangent space at a point $x \in \mathrm{M}$ as a space attached to $x$ on the differential manifold $M$.
## Properties of tangent spaces
> *Theorem 1*: let $M$ be a differential manifold and let $x \in \mathrm{M}$, the tangent space $\mathrm{T}_x\mathrm{M}$ is a vector space.
??? note "*Proof*:"
Will be added later.
Thus, the tangent space is a vector space attached to $x \in \mathrm{M}$ on the differential manifold. It follows that its vectors have interesting properties.
> *Theorem 2*: let $M$ be a differential manifold, let $x \in \mathrm{M}$ and let $\mathbf{v}_x \in \mathrm{T}_x\mathrm{M}$, then we have that
>
> $$
> \forall f \in C^{\infty}(\mathrm{M}): \mathbf{v}_x f = v^i \partial_i f(x),
> $$
>
> such that $\mathbf{v}_x = v^i \partial_i \in \mathrm{T}_x\mathrm{M}$ is denoted as a **tangent vector** in the tangent space $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
Will be added later.
Theorem 2 adds the notion of tangent vectors to the explanation of the tangent space. The tangent space at a point on the manifold thus represents the space of tangent vectors.
> *Proposition 1*: let $M$ be a differential manifold of $\dim\mathrm{M} = n \in \mathbb{N}$. The tangent space $\mathrm{T}_x\mathrm{M}$ has dimension $n$ such that
>
> $$
> \forall x \in \mathrm{M}: \dim \mathrm{T}_x\mathrm{M} = \dim\mathrm{M}
> $$
>
> and is span by the vector basis $\{\partial_i\}_{i=1}^n$.
??? note "*Proof*:"
Will be added later.
Proposition 1 states that the tangent space is of the same dimension as the manifold and its basis are partial derivative operators. In the context of the [covariant basis](), this definition of the basis leaves out the coordinate map, but is in fact equivalent to the covariant basis.
As a last step in the explanation, we may think of the 2 dimensional surface of a sphere, which may define a differential manifold $M$. The tangent space at a point $x \in \mathrm{M}$ on the surface of the sphere may then be compared to the tangent plane to the sphere attached at point $x \in \mathrm{M}$. The catch is that the 3 dimensional space necessary to understand this construction exists only in our imagination and not in the mathematical construct.
## Tangent bundle
> *Definition 2*: let $M$ be a differential manifold, the collection of tangent spaces $\mathrm{T}_x\mathrm{M}$ for all $x \in \mathrm{M}$ define the **tangent bundle** as
>
> $$
> \mathrm{TM} = \bigcup_{x \in \mathrm{M}} \mathrm{T}_x\mathrm{M}.
> $$
In particular, we may think of the tangent bundle $\mathrm{TM}$ as a subspace $\mathrm{TM} \subset V$ of the fiber bundle $V$ for a differential manifold. With the special properties given in theorem 2 and proposition 1.
The connection of each tangent vector to its base point may be formalised with the projection map $\pi$ which in this case is given by
$$
\pi: \mathrm{TM} \to\mathrm{M}: (x, \mathbf{v}) \mapsto \pi(x, \mathbf{v}) \overset{\text{def}}{=} x,
$$
and its inverse
$$
\pi^{-1}:\mathrm{M} \to \mathrm{TM}: x \mapsto \pi^{-1}(x) \overset{\text{def}}{=} \mathrm{T}_x\mathrm{M}.
$$
> *Definition 3*: a vector field $\mathbf{v}$ on a differential manifold $M$ is a section
>
> $$
> \mathbf{v} \in \Gamma(\mathrm{TM}),
> $$
>
> of the tangent bundle $\mathrm{TM}$.
## Cotangent spaces
> *Definition 4*: let $M$ be a differential manifold and $\mathrm{T}_x\mathrm{M}$ the tangent space at $x \in \mathrm{M}$. We define the **cotangent space** $\mathrm{T}_x^*\mathrm{M}$ as the dual space of $\mathrm{T}_x\mathrm{M}$
>
> $$
> \mathrm{T}_x^*\mathrm{M} = (\mathrm{T}_x\mathrm{M})^*.
> $$
>
> Then every element $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ is a linear map $\bm{\omega}_x: \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ denoted as the **cotangent vector**.
This definition is a logical consequence of the notion of the [dual vector space](). It then also follows that the dual cotangent space is isomorphic to the tangent space at a point $x \in \mathrm{M}$.
> *Theorem 3*: let $\mathrm{M}$ be a differential manifold of $\dim \mathrm{M} = n \in \mathbb{N}$, then we have that for every $x \in \mathrm{M}$ the basis $\{dx^i\}_{i=1}^n$ of $\mathrm{T}_x^*\mathrm{M}$ is uniquely determined by
>
> $$
> dx^i(\partial_j) = \delta^i_j,
> $$
>
> for each basis $\{\partial_j\}_{j=1}^n$ in $\mathrm{T}_x\mathrm{M}$.
??? note "*Proof*:"
The proof follows directly from theorem 1 in [dual vector spaces]().
The choice of $dx^i$ can be explained by taking the differential $df = \partial_i f dx^i \in \mathrm{T}_x^*\mathrm{M}$ with $f \in C^\infty(\mathrm{M})$. Then if we take
$$
\mathbf{k}_x(df, \mathbf{v}) = \mathbf{k}(\partial_i f dx^i, v^j \partial_j) = v^j \partial_i f \mathbf{k}(dx^i, \partial_j) = v^j \partial_i f \delta^i_j = v^i \partial_i f = \mathbf{v} f,
$$
with $\mathbf{k}_x: \mathrm{T}_x^*\mathrm{M} \times \mathrm{T}_x\mathrm{M} \to \mathbb{K}$ the Kronecker tensor at $x \in \mathrm{M}$. Which shows that defining the basis of the cotangent space as differentials corresponds with respect to the basis of the tangent space.
So, a cotangent vector $\bm{\omega}_x \in \mathrm{T}_x^*\mathrm{M}$ may be decomposed into
$$
\bm{\omega}_x = \omega_i dx^i.
$$
In the context of the [contravariant basis](), this definition of the basis leaves out the coordinate map, but is in fact equivalent to the contravariant basis.
## Cotangent bundle
> *Definition 5*: let $M$ be a differential manifold, the collection of cotangent spaces $\mathrm{T}_x^*\mathrm{M}$ for all $x \in \mathrm{M}$ define the **cotangent bundle** as
>
> $$
> \mathrm{T^*M} = \bigcup_{x \in \mathrm{M}} \mathrm{T}_x^*\mathrm{M}.
> $$
Thus, we may think of the cotangent bundle $\mathrm{T^*M}$ as a subspace $\mathrm{T^*M} \subset V^*$ of the dual fiber bundle $V^*$ for a differential manifold.

View file

@ -0,0 +1,39 @@
# Torsion
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle, $V$ and $V^*$ the fiber and dual fiber bundle and $\mathscr{B}$ the tensor fiber bundle.
## Torsion operator
> *Definition 1*: the **torsion operator** $\Theta: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to \Gamma(\mathrm{TM})$ is defined as
>
> $$
> \Theta(\mathbf{u}, \mathbf{v}) = \nabla_\mathbf{u} \mathbf{v} - \nabla_\mathbf{v} \mathbf{u} - \mathscr{L}_\mathbf{u} \mathbf{v},
> $$
>
> for all $\mathbf{u}, \mathbf{v} \in \Gamma(\mathrm{TM})$ and $\mathscr{L}$ the [Lie derivative]().
Using this definition we obtain the following results.
> *Proposition 1*: the decomposition of the torsion operator results into
>
> $$
> \mathbf{k}(\bm{\omega}, \Theta(\mathbf{u}, \mathbf{v})) = \omega_i u^j v^k (\Gamma^i_{kj} - \Gamma^i_{jk}),
> $$
>
> for all $\bm{\omega} \in \Gamma(\mathrm{T}^*\mathrm{M})$ and $\mathbf{u}, \mathbf{v} \in \Gamma(\mathrm{TM})$.
??? note "*Proof*:"
Will be added later.
## Torsion tensor
As a result of proposition 1 we may view torsion as a locally defined mixed tensor of type $\mathbf{T} \in \mathrm{T}_x \mathrm{M} \otimes \mathrm{T}_x^* \mathrm{M} \otimes \mathrm{T}_x^* \mathrm{M}$.
> *Definition 2*: the **torsion tensor** $\mathbf{T}: \mathrm{T}_x^* \mathrm{M} \times \mathrm{T}_x \mathrm{M} \times \mathrm{T}_x \mathrm{M} \to \mathbb{K}$ with $x \in \mathrm{M}$ is defined as
>
> $$
> \mathbf{T}(\bm{\omega}, \mathbf{u}, \mathbf{v}) = \mathbf{k} \big(\bm{\omega}, \Theta(\mathbf{u}, \mathbf{v}) \big),
> $$
>
> for all $\bm{\omega} \in \mathrm{T}^*_x\mathrm{M}$ and $\mathbf{u}, \mathbf{v} \in \mathrm{T}_x \mathrm{M}$.

View file

@ -0,0 +1,35 @@
# Transformations
Let $\mathrm{M}$ be a differential manifold with $\dim \mathrm{M} = n \in \mathbb{N}$ used throughout the section. Let $\mathrm{TM}$ and $\mathrm{T^*M}$ denote the tangent and cotangent bundle.
## Push forward and pull back
> *Definition 1*: let $\mathrm{M}, \mathrm{N}$ be two differential manifolds with $\dim \mathrm{N} \geq \dim \mathrm{M}$ and let $\psi: \mathrm{M} \to \mathrm{N}$ be the diffeomorphism between the manifolds. Then we define the **pull back** $\psi^*$ and **push forward** $\psi_*$ operators, such that for $\mathbf{v} \in \mathrm{T}_x \mathrm{M}$ and $\bm{\omega} \in \mathrm{T}_{\psi(x)}^* \mathrm{M}$ we have
>
> $$
> \mathbf{k}_x(\psi^* \bm{\omega}, \mathbf{v}) = \mathbf{k}_{\psi(x)}(\bm{\omega}, \psi_* \mathbf{v}),
> $$
>
> for all $x \in \mathrm{M}$.
Which indicates the proper separation between the elements of both spaces.
## Basis transformation
Let $\psi: \mathscr{D}(\mathrm{M}) \to \mathrm{M}: x \mapsto \psi(x) \overset{\text{def}}{=} \overline{x}$ be an active coordinate transformation from a point $x$ to a point $\overline{x}$ on $\mathrm{M}$. Then we have a basis $\{\partial_i\}_{i=1}^n \subset \mathrm{T}_x\mathrm{M}$ for the tangent space $\mathrm{T}_x\mathrm{M}$ at $x$ and a basis $\{\overline{\partial_i}\}_{i=1}^n \subset \mathrm{T}_{\overline{x}}\mathrm{M}$ for the tangent space $\mathrm{T}_{\overline{x}}\mathrm{M}$ at $\overline{x}$. Which are related by
$$
\partial_i = J^j_i \overline{\partial_j} = \partial_i \psi^j(x) \overline{\partial_j},
$$
with $J^j_i = \partial_i \psi^j(x)$ the [Jacobian]() at $x \in \mathrm{M}$. For it to make sense, it helps to change notation to
$$
\frac{\partial}{\partial x_i} = \frac{\partial \overline{x}^j}{\partial x_i} \frac{\partial}{\partial \overline{x}_j} = \frac{\partial \psi^j}{\partial x_i} \frac{\partial}{\partial \overline{x}_j}.
$$
Similarly, we have a basis $\{dx^i\}_{i=1}^n \subset \mathrm{T}_x^*\mathrm{M}$ for the cotangent space $\mathrm{T}_x\mathrm{M}$ at $x$ and a basis $\{d\overline{x}^i\}_{i=1}^n \subset \mathrm{T}_{\overline{x}}^*\mathrm{M}$ for the cotangent space $\mathrm{T}_{\overline{x}}^*\mathrm{M}$ at $\overline{x}$. Which are related by
$$
d\overline{x}^i = J^i_j dx^j = \partial_j \psi^i(x) dx^j.
$$