port from mathematics-physics notes
This commit is contained in:
parent
a4e106ce02
commit
c009ea53f0
124 changed files with 13224 additions and 0 deletions
|
@ -0,0 +1,50 @@
|
|||
# Exponential and logarithmic functions
|
||||
|
||||
## The natural logarithm
|
||||
|
||||
The natural logarithm is defined as having its derivative equal to $\frac{1}{x}$. For $x > 0$, then
|
||||
|
||||
$$
|
||||
\frac{d}{dx} \ln x = \frac{1}{x}.
|
||||
$$
|
||||
|
||||
### Standard limit
|
||||
|
||||
$$
|
||||
\lim_{h \to 0} \frac{\ln (1+h)}{h} = 1
|
||||
$$
|
||||
|
||||
## The exponential function
|
||||
|
||||
The exponential function is defined as the inverse of the natural logarithm
|
||||
|
||||
$$
|
||||
\ln e^x = x.
|
||||
$$
|
||||
|
||||
Furthermore $e$ may be defined by,
|
||||
|
||||
$$
|
||||
\begin{array}{ll}
|
||||
\lim_{n \to \infty} (1 + \frac{1}{n})^n = e, \\
|
||||
\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x.
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
### Derivative of exponential function
|
||||
|
||||
The derivative of $y = e^x$ may be calculated by [implicit differentation](../differentation.md#implicit-differentation):
|
||||
|
||||
$$
|
||||
\begin{array}{ll}
|
||||
y = e^x &\implies x = \ln y, \\
|
||||
&\implies 1 = \frac{1}{y} \frac{dy}{dx}, \\
|
||||
&\implies \frac{dy}{dx} = y = e^x.
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
### Standard limit
|
||||
|
||||
$$
|
||||
\lim_{h \to 0} \frac{e^h - 1}{h} = 1
|
||||
$$
|
Loading…
Add table
Add a link
Reference in a new issue