port from mathematics-physics notes

This commit is contained in:
Luc Bijl 2025-08-26 15:48:53 +02:00
parent a4e106ce02
commit c009ea53f0
124 changed files with 13224 additions and 0 deletions

View file

@ -0,0 +1,50 @@
# Exponential and logarithmic functions
## The natural logarithm
The natural logarithm is defined as having its derivative equal to $\frac{1}{x}$. For $x > 0$, then
$$
\frac{d}{dx} \ln x = \frac{1}{x}.
$$
### Standard limit
$$
\lim_{h \to 0} \frac{\ln (1+h)}{h} = 1
$$
## The exponential function
The exponential function is defined as the inverse of the natural logarithm
$$
\ln e^x = x.
$$
Furthermore $e$ may be defined by,
$$
\begin{array}{ll}
\lim_{n \to \infty} (1 + \frac{1}{n})^n = e, \\
\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x.
\end{array}
$$
### Derivative of exponential function
The derivative of $y = e^x$ may be calculated by [implicit differentation](../differentation.md#implicit-differentation):
$$
\begin{array}{ll}
y = e^x &\implies x = \ln y, \\
&\implies 1 = \frac{1}{y} \frac{dy}{dx}, \\
&\implies \frac{dy}{dx} = y = e^x.
\end{array}
$$
### Standard limit
$$
\lim_{h \to 0} \frac{e^h - 1}{h} = 1
$$

View file

@ -0,0 +1,69 @@
# Inverse functions
## Injectivity
A function $f$ is called injective if for all $x_1,x_2 \in \mathrm{Dom}(f), \space x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2).$ Meaning that for every $y \in \mathrm{Rang}(f)$ there is precisely one $x \in \mathrm{Dom}(f)$ such that $y = f(x)$. Meaning, every $x$ has an unique $y$.
## Inverse function
If $f$ is injective, then it has an inverse function $f^{-1}$. The value of $f^{-1}(x)$ is the unique number $y$ in the domain of $f$ for which $f(y) = x$. Thus,
$$
y = f^{-1}(x) \iff x = f(y)
$$
Suppose $f$ is a continuous function, $f$ is injective if $f$ is strictly increasing or decreasing. That is, $f' \leq 0 \vee f' \geq 0$.
### Derivative of inverse function
When $f$ is differentiable and injective $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.
**Proof:**
$$f(y) = x \implies f'(y) \frac{dy}{dx} = 1$$
$$\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}$$
Without knowing the inverse function a value of the inverse derivative may be determined.
## The arcsine function
Always $\arcsin$ not $\sin^{-1}$ that is wrong since $\sin$ is not injective.
For $x \in [-\frac{\pi}{2},\frac{\pi}{2}] \space \arcsin(\sin x) = x$
For $x \in [-1,1] \space \sin(\arcsin x) = x$
The arccosine function is similar.
## Example question
Prove that $\forall x \geq 0$: $\arctan(x + 1) - \arctan(x) < \frac{1}{1 + x^2}$.
For $x = 0$: $\frac{\pi}{4} < 1$.
For $x > 0$: Consider the function $f(t) = \arctan(t)$ on the interval $[x, x+1]$. Apply the [Mean-value theorem](../differentation.md/#mean-value-theorem) of $f$ at the interval $[x,x+1]$,
$$\frac{f(x+1) - f(x)}{(x+1) - 1} = f'(c).$$
Let $\arctan(c) = y$ then, $c = \tan y$,
$$
\begin{array}{ll}
\frac{dy}{dc} (c = \tan y) &\implies 1 = \sec^2 (y) \frac{dy}{dc} = (\tan^2 y + 1) \frac{dy}{dc} \\
&\implies 1 = (c^2 + 1) \frac{dy}{dc} \\
&\implies \frac{dy}{dc} = \frac{1}{c^2 + 1}.
\end{array}
$$
Obtaining,
$$\arctan(x+1) - \arctan(x) = f'(c) = \frac{1}{c^2 + 1}.$$
For some $c \in (x,x+1)$, since $c > x$
$$\frac{1}{1 + c^2} < \frac{1}{1 + x^2},$$
thereby
$$\arctan(x+1) - \arctan(x) < \frac{1}{1 + x^2}.$$