electromagnetic-dynamics: add waves

This commit is contained in:
Luc Bijl 2025-09-14 15:15:25 +02:00
parent 154fd80a32
commit 8050dd282c

View file

@ -221,6 +221,47 @@ then it follows from Newton's second law that:
Should be rewritten/reconsidered in Lagrangian/Hamiltonian formalism. Should be rewritten/reconsidered in Lagrangian/Hamiltonian formalism.
### Waves
We may decouple the posed equations in *Axiom 1*, obtaining second order equations describing the electric and magnetic field.
> *Theorem 5*: In regions of space where $\rho = 0$ and $\mathbf{J} = \mathbf{0}$, the electric $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$ and magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ adhere to
>
> $$
> \begin{align*}
> \nabla^2 \mathbf{E} &= \frac{1}{c^2} \partial_t^2 \mathbf{E},\\
> \nabla^2 \mathbf{B} &= \frac{1}{c^2} \partial_t^2 \mathbf{B},
> \end{align*}
> $$
>
> with a wave speed $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$.
??? note "Proof:"
For the electric field $\mathbf{E}$ in a region for which $\rho=0$ and $\mathbf{J}=\mathbf{0}$ we have
$$
\begin{align*}
\nabla^2 \mathbf{E} &= - \nabla \times (\nabla \times \mathbf{E}),\\
&= \nabla \times \partial_t \mathbf{B},\\
&= \partial_t (\nabla \times \mathbf{B}),\\
&= \mu_0 \epsilon_0 \partial^2_t \mathbf{E}.
\end{align*}
$$
For the magnetic field $\mathbf{B}$ in a region for which $\rho=0$ and $\mathbf{J}=\mathbf{0}$ we have
$$
\begin{align*}
\nabla^2 \mathbf{B} &= - \nabla \times (\nabla \times \mathbf{B}),\\
&= -\nabla \times (\mu_0 \epsilon_0 \partial_t \mathbf{E}),\\
&= -\mu_0 \epsilon_0 \partial_t (\nabla \times \mathbf{E}),\\
&= \mu_0 \epsilon_0 \partial_t^2 \mathbf{B}.
\end{align*}
$$
The second order equations posed in *Theorem 5* satisfy exactly the three-dimensional wave equation. Thus, vacuum supports the propagation of electromagnetic waves traveling at a constant speed $c$. In my opinion one of the most mesmerizing results of the theory of electromagnetism.
## Electromagnetic dynamics in matter ## Electromagnetic dynamics in matter
Let $\mathbf{J}_p = \partial_t \mathbf{P}$ denote the polarisation volume current density such that Let $\mathbf{J}_p = \partial_t \mathbf{P}$ denote the polarisation volume current density such that
@ -236,7 +277,7 @@ $$
complying to the conservation of charge. complying to the conservation of charge.
> *Theorem 5*: The electric field $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$, electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$, magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ and auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ in a medium are described by > *Theorem 6*: The electric field $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$, electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$, magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ and auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ in a medium are described by
> >
> $$ > $$
> \begin{align*} > \begin{align*}
@ -272,3 +313,58 @@ complying to the conservation of charge.
or $\nabla \times \mathbf{H} = \mathbf{J}_f + \partial_t \mathbf{D}$. or $\nabla \times \mathbf{H} = \mathbf{J}_f + \partial_t \mathbf{D}$.
Which require constitutive relations for closure. Which require constitutive relations for closure.
### Waves
The posed equations in *Theorem 6* may de decoupled as well, obtaining, as expected, three-dimensional wave equations describing the electric and magnetic field.
> *Theorem 7*: In a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$, the electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$ and the auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ adhere to
>
> $$
> \begin{align*}
> \nabla^2 \mathbf{D} &= \frac{1}{v^2} \partial_t^2 \mathbf{D},\\
> \nabla^2 \mathbf{H} &= \frac{1}{v^2} \partial_t^2 \mathbf{H},
> \end{align*}
> $$
>
> with a wave speed $v = \frac{1}{\sqrt{\mu \epsilon}}$.
??? note "Proof:"
For the electric displacement in a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$ we have
$$
\begin{align*}
\nabla^2 \mathbf{D} &= \epsilon \nabla^2 \mathbf{E},\\
&= - \epsilon \nabla \times (\nabla \times \mathbf{E}),\\
&= \epsilon \nabla \times \partial_t \mathbf{B},\\
&= \epsilon \partial_t (\nabla \times \mathbf{B}),\\
&= \mu \epsilon \partial_t (\nabla \times \mathbf{H},\\
&= \mu \epsilon \partial_t^2 \mathbf{D}.
\end{align*}
$$
For the auxiliary field in a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$ we have
$$
\begin{align*}
\nabla^2 \mathbf{H} &= \nabla^2 \mathbf{H},\\
&= - \nabla \times (\nabla \times \mathbf{H}),\\
&= - \nabla \times \partial_t \mathbf{D},\\
&= - \partial_t (\nabla \times \mathbf{D}),\\
&= - \epsilon \partial_t (\nabla \times \mathbf{E}),\\
&= \epsilon \partial_t^2 \mathbf{B},\\
&= \mu \epsilon \partial_t^2 \mathbf{H}.
\end{align*}
$$
Equivalently we may write *Theorem 7* in terms of the electric and magnetic fields in the linear, homogeneous, dielectric medium where $\rho_f = 0$ and $\mathbf{J}_f = \mathbf{0}$
$$
\begin{align*}
\nabla^2 \mathbf{E} = \frac{1}{v^2} \partial_t^2 \mathbf{E},\\
\nabla^2 \mathbf{B} = \frac{1}{v^2} \partial_t^2 \mathbf{B},
\end{align*}
$$
since $\mathbf{D} = \epsilon \mathbf{E}$ and $\mathbf{B} = \mu \mathbf{H}$.