electromagnetic-dynamics: add waves
This commit is contained in:
parent
154fd80a32
commit
8050dd282c
1 changed files with 97 additions and 1 deletions
|
|
@ -221,6 +221,47 @@ then it follows from Newton's second law that:
|
|||
|
||||
Should be rewritten/reconsidered in Lagrangian/Hamiltonian formalism.
|
||||
|
||||
### Waves
|
||||
|
||||
We may decouple the posed equations in *Axiom 1*, obtaining second order equations describing the electric and magnetic field.
|
||||
|
||||
> *Theorem 5*: In regions of space where $\rho = 0$ and $\mathbf{J} = \mathbf{0}$, the electric $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$ and magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ adhere to
|
||||
>
|
||||
> $$
|
||||
> \begin{align*}
|
||||
> \nabla^2 \mathbf{E} &= \frac{1}{c^2} \partial_t^2 \mathbf{E},\\
|
||||
> \nabla^2 \mathbf{B} &= \frac{1}{c^2} \partial_t^2 \mathbf{B},
|
||||
> \end{align*}
|
||||
> $$
|
||||
>
|
||||
> with a wave speed $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$.
|
||||
|
||||
??? note "Proof:"
|
||||
|
||||
For the electric field $\mathbf{E}$ in a region for which $\rho=0$ and $\mathbf{J}=\mathbf{0}$ we have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\nabla^2 \mathbf{E} &= - \nabla \times (\nabla \times \mathbf{E}),\\
|
||||
&= \nabla \times \partial_t \mathbf{B},\\
|
||||
&= \partial_t (\nabla \times \mathbf{B}),\\
|
||||
&= \mu_0 \epsilon_0 \partial^2_t \mathbf{E}.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
For the magnetic field $\mathbf{B}$ in a region for which $\rho=0$ and $\mathbf{J}=\mathbf{0}$ we have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\nabla^2 \mathbf{B} &= - \nabla \times (\nabla \times \mathbf{B}),\\
|
||||
&= -\nabla \times (\mu_0 \epsilon_0 \partial_t \mathbf{E}),\\
|
||||
&= -\mu_0 \epsilon_0 \partial_t (\nabla \times \mathbf{E}),\\
|
||||
&= \mu_0 \epsilon_0 \partial_t^2 \mathbf{B}.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
The second order equations posed in *Theorem 5* satisfy exactly the three-dimensional wave equation. Thus, vacuum supports the propagation of electromagnetic waves traveling at a constant speed $c$. In my opinion one of the most mesmerizing results of the theory of electromagnetism.
|
||||
|
||||
## Electromagnetic dynamics in matter
|
||||
|
||||
Let $\mathbf{J}_p = \partial_t \mathbf{P}$ denote the polarisation volume current density such that
|
||||
|
|
@ -236,7 +277,7 @@ $$
|
|||
|
||||
complying to the conservation of charge.
|
||||
|
||||
> *Theorem 5*: The electric field $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$, electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$, magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ and auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ in a medium are described by
|
||||
> *Theorem 6*: The electric field $\mathbf{E}: (\mathbf{r},t) \mapsto \mathbf{E}(\mathbf{r},t)$, electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$, magnetic field $\mathbf{B}: (\mathbf{r},t) \mapsto \mathbf{B}(\mathbf{r},t)$ and auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ in a medium are described by
|
||||
>
|
||||
> $$
|
||||
> \begin{align*}
|
||||
|
|
@ -272,3 +313,58 @@ complying to the conservation of charge.
|
|||
or $\nabla \times \mathbf{H} = \mathbf{J}_f + \partial_t \mathbf{D}$.
|
||||
|
||||
Which require constitutive relations for closure.
|
||||
|
||||
### Waves
|
||||
|
||||
The posed equations in *Theorem 6* may de decoupled as well, obtaining, as expected, three-dimensional wave equations describing the electric and magnetic field.
|
||||
|
||||
> *Theorem 7*: In a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$, the electric displacement $\mathbf{D}: (\mathbf{r},t) \mapsto \mathbf{D}(\mathbf{r},t)$ and the auxiliary field $\mathbf{H}: (\mathbf{r},t) \mapsto \mathbf{H}(\mathbf{r},t)$ adhere to
|
||||
>
|
||||
> $$
|
||||
> \begin{align*}
|
||||
> \nabla^2 \mathbf{D} &= \frac{1}{v^2} \partial_t^2 \mathbf{D},\\
|
||||
> \nabla^2 \mathbf{H} &= \frac{1}{v^2} \partial_t^2 \mathbf{H},
|
||||
> \end{align*}
|
||||
> $$
|
||||
>
|
||||
> with a wave speed $v = \frac{1}{\sqrt{\mu \epsilon}}$.
|
||||
|
||||
??? note "Proof:"
|
||||
|
||||
For the electric displacement in a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$ we have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\nabla^2 \mathbf{D} &= \epsilon \nabla^2 \mathbf{E},\\
|
||||
&= - \epsilon \nabla \times (\nabla \times \mathbf{E}),\\
|
||||
&= \epsilon \nabla \times \partial_t \mathbf{B},\\
|
||||
&= \epsilon \partial_t (\nabla \times \mathbf{B}),\\
|
||||
&= \mu \epsilon \partial_t (\nabla \times \mathbf{H},\\
|
||||
&= \mu \epsilon \partial_t^2 \mathbf{D}.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
For the auxiliary field in a linear, homogeneous, dielectric medium where $\rho_f=0$ and $\mathbf{J}_f=\mathbf{0}$ we have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\nabla^2 \mathbf{H} &= \nabla^2 \mathbf{H},\\
|
||||
&= - \nabla \times (\nabla \times \mathbf{H}),\\
|
||||
&= - \nabla \times \partial_t \mathbf{D},\\
|
||||
&= - \partial_t (\nabla \times \mathbf{D}),\\
|
||||
&= - \epsilon \partial_t (\nabla \times \mathbf{E}),\\
|
||||
&= \epsilon \partial_t^2 \mathbf{B},\\
|
||||
&= \mu \epsilon \partial_t^2 \mathbf{H}.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Equivalently we may write *Theorem 7* in terms of the electric and magnetic fields in the linear, homogeneous, dielectric medium where $\rho_f = 0$ and $\mathbf{J}_f = \mathbf{0}$
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\nabla^2 \mathbf{E} = \frac{1}{v^2} \partial_t^2 \mathbf{E},\\
|
||||
\nabla^2 \mathbf{B} = \frac{1}{v^2} \partial_t^2 \mathbf{B},
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
since $\mathbf{D} = \epsilon \mathbf{E}$ and $\mathbf{B} = \mu \mathbf{H}$.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue