linear-algebra: update

This commit is contained in:
Luc Bijl 2025-09-20 21:44:37 +02:00
parent f8a647054a
commit 7d7fea70c9
3 changed files with 54 additions and 18 deletions

View file

@ -1,13 +1,13 @@
# Tensor formalism
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$ and a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}.$ In the following sections we make use of the Einstein summation convention and $\mathbb{K} = \mathbb{R} \lor\mathbb{K} = \mathbb{C}$.
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$ and a field $F$. In the following sections we make use of the Einstein summation convention.
## Definition
> *Definition 1*: a **tensor** is a multilinear mapping of the type
>
> $$
> \mathbf{T}: \underbrace{V^* \times \dots \times V^*}_p \times \underbrace{V \times \dots \times V}_q \to \mathbb{K},
> \mathbf{T}: \underbrace{V^* \times \dots \times V^*}_p \times \underbrace{V \times \dots \times V}_q \to F,
> $$
>
> with $p, q \in \mathbb{N}$. Tensors are collectively denoted as
@ -16,7 +16,7 @@ We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim
> \mathbf{T} \in \underbrace{V \otimes \dots \otimes V}_p \otimes \underbrace{V^* \otimes \dots \otimes V^*}_q = \mathscr{T}_q^p(V),
> $$
>
> with $\mathscr{T}_0^0(V) = \mathbb{K}$.
> with $\mathscr{T}_0^0(V) = F$.
We refer to $\mathbf{T} \in \mathscr{T}_q^p(V)$ as a $(p, q)$-tensor; a mixed tensor of **contravariant rank** $p$ and **covariant rank** $q.$ It may be observed that we have $\dim \mathscr{T}_q^p (V) = n^{p+q}$ with $\dim V = n \in \mathbb{N}$.
@ -45,7 +45,7 @@ $$
## Outer product
> *Definition 3*: the outer product $f \otimes g: X \times Y \to \mathbb{K}$ of two scalar functions $f: X \to \mathbb{K}$ and $g: Y \to \mathbb{K}$ is defined as
> *Definition 3*: the outer product $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
>
> $$
> (f \otimes g)(x,y) = f(x) g(y),
@ -69,7 +69,7 @@ The following statements are given with $p=q=r=s=1$ without loss of generality.
From this definition the subsequent theorem follows naturally.
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}_q^p(V)$ be a tensor, then there exists **holors** $T_j^i \in \mathbb{K}$ such that
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}_q^p(V)$ be a tensor, then there exists **holors** $T_j^i \in F$ such that
>
> $$
> \mathbf{T} = T^i_j \mathbf{e}_i \otimes \mathbf{\hat e}^j,
@ -90,11 +90,11 @@ From this definition the subsequent theorem follows naturally.
\end{align*}
$$
For $\mathbf{T} \in \mathscr{T}^0_q(V)$ it follows that there exists holors $T_i \in \mathbb{K}$ such that $\mathbf{T} = T_i \mathbf{\hat e}^i$ with $T_i = \mathbf{T}(\mathbf{e}_i)$, are referred to as the **covariant components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
For $\mathbf{T} \in \mathscr{T}^0_q(V)$ it follows that there exists holors $T_i \in F$ such that $\mathbf{T} = T_i \mathbf{\hat e}^i$ with $T_i = \mathbf{T}(\mathbf{e}_i)$, are referred to as the **covariant components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
For $\mathbf{T} \in \mathscr{T}^p_0(V)$ it follows that there exists holors $T^i \in \mathbb{K}$ such that $\mathbf{T} = T^i \mathbf{e}_i$ with $T^i = \mathbf{T}(\mathbf{\hat e}^i)$, are referred to as the **contravariant components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
For $\mathbf{T} \in \mathscr{T}^p_0(V)$ it follows that there exists holors $T^i \in F$ such that $\mathbf{T} = T^i \mathbf{e}_i$ with $T^i = \mathbf{T}(\mathbf{\hat e}^i)$, are referred to as the **contravariant components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
If $\mathbf{T} \in \mathscr{T}^p_q(V)$, it follows that there exists holors $T^i_j \in \mathbb{K}$ are coined the **mixed components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
If $\mathbf{T} \in \mathscr{T}^p_q(V)$, it follows that there exists holors $T^i_j \in F$ are coined the **mixed components** of $\mathbf{T}$ relative to a basis $\{\mathbf{e}_i\}$.
By definition tensors are basis independent. Holors are basis dependent.
@ -135,10 +135,10 @@ We have from theorem 2 that the outer product of two tensors yields another tens
## Inner product
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to \mathbb{K}$ which satisfies
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
>
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{K}: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
> 3. for all $\mathbf{u} \in V\backslash \{\mathbf{0}\}: \bm{g}(\mathbf{u},\mathbf{u}) > 0,$
> 4. for $\mathbf{u} = \mathbf{0} \iff \bm{g}(\mathbf{u},\mathbf{u}) = 0.$
@ -209,7 +209,7 @@ $$
\mathbf{k}(\mathbf{g}(\mathbf{u}), \mathbf{v}) = \text{g}_{ij} u^i v^k\mathbf{k}(\mathbf{\hat e}^j, \mathbf{e}_k) = \text{g}_{ij} u^i v^k \delta^j_k = \text{g}_{ij} u^i v^j.
$$
Since $u^i, v^j \in \mathbb{K}$ are arbitrary it follows that $\text{g}_{ij} = g_{ij}$.
Since $u^i, v^j \in F$ are arbitrary it follows that $\text{g}_{ij} = g_{ij}$.
Consequently, the inverse $\mathbf{g}^{-1}: V^* \to V$ has the property $\mathbf{g}^{-1}(\mathbf{\hat u}) = G^{-1} \mathbf{\hat u}$ for all $\mathbf{\hat u} \in V^*$. The bijective linear map $\mathbf{g}$ is commonly known as the **metric** and $\mathbf{g}^{-1}$ as the **dual metric**.