docs: update linking
This commit is contained in:
parent
c009ea53f0
commit
6350356f15
9 changed files with 19 additions and 19 deletions
|
@ -1,6 +1,6 @@
|
|||
# Tensor formalism
|
||||
|
||||
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$ and a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}.$ In the following sections we make use of the Einstein summation convention introduced in [vector analysis](/en/physics/mathematical-physics/vector-analysis/curvilinear-coordinates/) and $\mathbb{K} = \mathbb{R} \lor\mathbb{K} = \mathbb{C}.$
|
||||
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$ and a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}.$ In the following sections we make use of the Einstein summation convention and $\mathbb{K} = \mathbb{R} \lor\mathbb{K} = \mathbb{C}$.
|
||||
|
||||
## Definition
|
||||
|
||||
|
@ -239,4 +239,4 @@ with $u^j = g^{ij} u_i$.
|
|||
> \mathbf{g}(\mathbf{e}^i) = g_{ij} \mathbf{\hat e}^j.
|
||||
> $$
|
||||
|
||||
So far, a vector space $V$ and its associated dual space $V^*$ have been introduced as a priori independent entities. An inner product provides us with an explicit mechanism to construct a bijective linear mapping associated with each vector by virtue of the metric.
|
||||
So far, a vector space $V$ and its associated dual space $V^*$ have been introduced as a priori independent entities. An inner product provides us with an explicit mechanism to construct a bijective linear mapping associated with each vector by virtue of the metric.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue