an update of various things

This commit is contained in:
Luc Bijl 2025-10-05 12:47:09 +02:00
parent 7d7fea70c9
commit 0e188f5a2c
10 changed files with 165 additions and 197 deletions

View file

@ -1,4 +1,6 @@
# Fiber bundles
# Topological notions
## Fiber bundles
Let $X$ be a manifold over a field $F$.

View file

@ -45,7 +45,7 @@ $$
## Outer product
> *Definition 3*: the outer product $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
> *Definition 3*: the **outer product** $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
>
> $$
> (f \otimes g)(x,y) = f(x) g(y),
@ -133,9 +133,45 @@ By definition tensors are basis independent. Holors are basis dependent.
We have from theorem 2 that the outer product of two tensors yields another tensor, with ranks adding up.
## Interior product
> *Definition 5*: the **left interior product** $f \llcorner \alpha: Y \to F$ of a scalar function $f:X \times Y \to F$ and a scalar $\alpha \in X$ is defined as
>
> $$
> (f \llcorner \alpha)(y) = f(\alpha,y) \qquad \forall y \in Y,
> $$
>
> and the **right interior product** $f \lrcorner \alpha: X \to F$ for a scalar $\alpha \in Y$ is defined as
>
> $$
> (f \lrcorner \alpha)(x) = f(x,\alpha) \qquad \forall x \in X.
> $$
Note that neither interior product is associative, commutatitive and only distributive in the field addition.
With the interior product we can partially contract a tensor (i.e. reduce its basis) with a (co)vector. Consider $\mathbf{T} \in \mathscr{T}^2_0(V)$ then
$$
\begin{align*}
\mathbf{T} \llcorner \mathbf{\hat v} &= T^{ij} \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_i) \mathbf{e}_j,\\
&= v_i T^{ij} \mathbf{e}_j.
\end{align*}
$$
or similarly
$$
\begin{align*}
\mathbf{T} \lrcorner \mathbf{\hat v} &= T^{ij} \mathbf{e}_i \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_j),\\
&= v_j T^{ij} \mathbf{e}_i.
\end{align*}
$$
for all $\mathbf{\hat v} \in V^*$.
## Inner product
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
> *Definition 6*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
>
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
@ -144,7 +180,7 @@ We have from theorem 2 that the outer product of two tensors yields another tens
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
> *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
> *Definition 7*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
>
> $$
> g_{ij} = \bm{g}(\mathbf{e}_i, \mathbf{e}_j).
@ -227,7 +263,7 @@ $$
with $u^j = g^{ij} u_i$.
> *Definition 7*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
> *Definition 8*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
>
> $$
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.

View file

@ -1,6 +1,6 @@
# Tensor symmetries
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field F and a pseudo inner product $\bm{g}$ on $V$.
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
## Symmetric tensors

View file

@ -12,7 +12,7 @@ so that $\mathbf{\hat e}^i = A^i_j \mathbf{\hat f}^j$.
## Transformation of tensors
Recall from the section of [tensor-formalism]() that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
Recall from the section of [tensor-formalism](tensor-formalism.md) that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}^p_q(V)$ be a tensor with $p=q=1$ without loss of generality and $B = A^{-1}$. Then $\mathbf{T}$ may be decomposed into
>
@ -26,12 +26,20 @@ Recall from the section of [tensor-formalism]() that a holor depends on the chos
> with the holors related by
>
> $$
> \overline T^i_j = B^i_k A^j_l T^k_l.
> \overline T^i_j = B^i_k A^l_j T^k_l.
> $$
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\mathbf{T} &= T^i_j B^k_i \mathbf{f}_k \otimes A^j_l \mathbf{\hat f}^l,\\
&= B^k_i A^j_l T^i_j \mathbf{f}_k \otimes \mathbf{\hat f}^l,\\
&= \overline T^i_j \mathbf{f}_i \otimes \mathbf{\hat f}^j.
\end{align*}
$$
The homogeneous nature of the tensor transformation implies that a holor equation of the form $T^i_j = 0$ holds relative to any basis if it holds relative to a particular one.
@ -54,7 +62,17 @@ The homogeneous nature of the tensor transformation implies that a holor equatio
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\bm{\mu} &= \mu_{i_1\dots i_n} A^{i_1}_{j_1} \mathbf{\hat f}^{j_1} \otimes \dots \otimes A^{i_n}_{j_n} \mathbf{\hat f}^{j_n},\\
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} \mu_{i_1\dots i_n} \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} [i_1,\dots,i_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= \det(A) [j_1,\dots,j_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= \overline \mu_{i_1 \dots i_n} \mathbf{\hat f}^{i_1} \otimes \dots \otimes \mathbf{\hat f}^{i_1}.
\end{align*}
$$
Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So that if $\bm{\mu}(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$, then $\bm{\mu}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \det(A).$
@ -75,10 +93,6 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
>
> then $\mu_{i_1 \dots i_n} = \overline \mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ is an invariant holor.
??? note "*Proof*:"
Will be added later.
## Transformation of Levi-Civita form
> *Theorem 3*: let $\bm{\epsilon} \in \bigwedge_n(V)$ be the Levi-Civita tensor with
@ -94,4 +108,4 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
??? note "*Proof*:"
Will be added later.
Follows directly from the definition $\bm{\epsilon} = \sqrt{g} \bm{\mu}$.

View file

@ -1,6 +1,6 @@
# Volume forms
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n,$ a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$ and a pseudo inner product $\bm{g}$ on $V.$
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
## n-forms
@ -12,7 +12,7 @@ We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim
>
> then $\bm{\mu}$ is the **unit volume form** with respect to the basis $\{\mathbf{e}_i\}$.
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in \mathbb{K}$.
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in F$.
> *Proposition 1*: the unit volume form $\bm{\mu} \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$ may be given by
>
@ -27,7 +27,31 @@ Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2
??? note "*Proof*:"
Will be added later.
Let $\pi = [\pi(1),\dots,\pi(n)]$ be any permutation of the set $\{1,\dots,n\}$, the unit volume form $\bm{\mu}$ is defined as
$$
\bm{\mu}(\mathbf{e}_{\pi(1)},\dots,\mathbf{e}_{\pi(2)}) = \mathrm{sign}(\pi),
$$
thus
$$
\bm{\mu} = \mu_{i_1\dots i_n} \mathbf{\hat e}^{i_1} \otimes \dots \otimes \mathbf{\hat e}^{i_n}.
$$
Furthermore $\mathscr{A}(\bm{\mu}) = \bm{\mu}$. Then
$$
\bm{\mu} = \mu_{i_1\dots i_n} \frac{1}{n!} \mathbf{\hat e}^{i_1} \wedge \dots \wedge \mathbf{\hat e}^{i_n},
$$
and going back to the definition only requires us to consider
$$
\bm{\mu} = \mathbf{\hat e}^{1} \wedge \dots \wedge \mathbf{\hat e}^{n},
$$
such that $\mu_{i_1\dots i_n} = [i_1,\dots,i_n]$.
The normalisation of the unit volume form $\bm{\mu}$ requires a basis. Consequently, the identification $\mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ holds only relative to the basis.
@ -47,7 +71,7 @@ $$
by convention, to resolve ambiguity with respect to the meaning of $\mu_{i_1 \dots i_n}$ without using another symbol or extra accents.
Using theorem 2 in the section of [tensor symmetries]() we may state the following.
Using theorem 2 in the section of [tensor symmetries](tensor-symmetries.md) we may state the following.
> *Proposition 2*: let $(V, \bm{\mu})$ be a vector space with an oriented volume form, then we have
>
@ -59,7 +83,15 @@ Using theorem 2 in the section of [tensor symmetries]() we may state the followi
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\bm{\mu}(\mathbf{v}_1,\dots,\mathbf{v}_n) &= \mu_{i_1\dots i_n} \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
&= [i_1,\dots,i_n] \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
&= \det\big(\mathbf{k}(\mathbf{\hat e}^i,\mathbf{v}_j)\big).
\end{align*}
$$
Which reveals the role of the Kronecker tensor and thus the role of the dual space in the definition of $\bm{\mu}$. We may also conclude that an oriented volume $\bm{\mu} \in \bigwedge_n(V)$ on a vector space $V$ does not require an inner product.
@ -73,9 +105,9 @@ From proposition 2 it may also be observed that within a geometrical context the
> \bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k(\mathbf{v}_{k+1}, \dots, \mathbf{v}_n) = \bm{\mu}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n),
> $$
>
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$ with $\lrcorner$ the insert operator.
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$.
It follows that $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
It follows that the $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
$$
\begin{align*}
@ -120,7 +152,16 @@ then we have $\epsilon_{i_1 \dots i_n} = \sqrt{g} \mu_{i_1 \dots i_n}$ and $\eps
??? note "*Proof*:"
Will be added later.
The reciprocal Levi-Civita tensor may be written as
$$
\begin{align*}
\mathbf{g}(\bm{\epsilon}) &= \sqrt{g} \mathbf{g}(\mathbf{\hat e}^1) \wedge \dots \wedge \mathbf{g}(\mathbf{\hat e}_n),\\
&= \sqrt{g} g^{1i_1} \mathbf{e}_{i_1} \wedge \dots \wedge g^{ni_n} \mathbf{e}_{i_n},\\
&= \sqrt{g} \det (G^{-1}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n,\\
&= \frac{1}{\sqrt{g}} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n.
\end{align*}
$$
We may decompose the reciprocal Levi-Civita tensor by

View file

@ -1,140 +0,0 @@
# Relativistic formalism of mechanics
From now on, we refer to space and time as spacetime.
## Fundamental assumptions
> *Postulate 1*: spacetime is continuous.
Implying that there is no fundamental limit to the precision of measurements of spatial positions, velocities and time intervals.
> *Postulate 2*: there exists a [neighbourhood]() in spacetime in which the axioms of [Euclidean]() geometry hold.
A reformulation of the postulate in the Newtonian formalism compatible with the new formulation.
> *Postulate 3*: all physical axioms have the same form in all inertial frames.
This principle is dependent on the definition of an inertial frame, which in my view is not optimal. It will have to be improved.
> *Principle 1*: spacetime is not instantaneous.
Implying that there exists a maximum speed with which information can travel.
> *Axiom 1*: spacetime is represented by a torsion-free pseudo Riemannian manifold $M$ with 3 spacial dimensions and 1 time dimension.
Torsion-free means that $\mathbf{T} = \mathbf{0}$, the [torsion tensor]() is always zero.
## Lorentz transformations
Will be added later.
## Results from the fundamental assumptions
> *Theorem 1*: let $\bm{g} \in \Gamma(\mathrm{TM})$ be the pseudo Riemannian inner product on $\mathrm{TM}$, then it follows that from [Hamilton's principle]() that the covariant derivative is equal to zero:
>
> $$
> \forall i \in \{1, 2, 3, 4\}: D_i \bm{g} = \mathbf{0},
> $$
>
> which is called *metric compatibility*.
??? note "*Proof*:"
Will be added later.
A linear connection $\nabla$ on a torsion-free pseudo Riemannian manifold with metric compatibility is called the **Levi-Civita connection** with its linear connection symbols denoted as the **Christoffel symbols**.
> *Theorem 2*: the Christoffel symbols $\Gamma_{ij}^k$ (of a Levi-Civita connection) are covariantly symmetric
>
> $$
> \Gamma_{ij}^k = \Gamma_{ji}^k,
> $$
>
> for all $(i,j,k) \in \{1,2,3,4\}^3$, and may be given by
>
> $$
> \Gamma_{ij}^k = \frac{1}{2} g^{kl} (\partial_i g_{ij} + \partial_j g_{il} - \partial_l g_{ij}),
> $$
>
> for all $\bm{g} = g_{ij} dx^i \otimes dx^j \in \Gamma(\mathrm{TM})$.
??? note "*Proof*:"
Will be added later.
Similarly, we have the following.
> *Proposition 1*: let $\mathbf{R}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{TM})^3 \to F$ be the Riemann curvature tensor on a manifold $M$ over a field $F$, defined under the Levi-Civita connection. Then it may be decomposed by
>
> $$
> \mathbf{R} = \frac{1}{8} R^i_{jkl} (\partial_i \wedge dx^j) \vee (dx^k \wedge dx^l).
> $$
??? note "*Proof*:"
Will be added later.
Such that $R^i_{jkl}$ has a dimension of
$$
\frac{4^2 (4^2 - 1)}{12} = 20.
$$
## Curvature
> *Definition 1*: let $\mathbf{W}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ denote the **Ricci tensor** which is defined as
>
> $$
> \begin{align*}
> \mathbf{W} &= \frac{1}{2} R_{ijk}^k dx^i \vee dx^j,\\
> &= \frac{1}{2} W_{ij} dx^i \vee dx^j,
> \end{align*}
> $$
>
> with $R_{ijk}^k$ the contracted Riemann holor and let $W$ be the **Ricci scalar** be defined as $W = W_{ij} g^{ij}$ with $g^{ij}$ the dual metric holor.
The Ricci tensor and scalar are normally denoted by the symbol $R$ but this would impose confusion with the curvature tensor, therefore it has been chosen to assign symbol $W$ to the Ricci tensor and scalar.
The **Ricci tensor** is a contraction (simplification) of the Riemann curvature tensor. It provides a way to summarize the curvature of a manifold by focusing on how volumes change in the presence of curvature. The **Ricci scalar** summarizes the curvature information contained in the **Ricci tensor**.
> *Definition 2*: let $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ denote the **Einstein tensor** which is defined as
>
> $$
> \mathbf{G} = \mathbf{W} - \frac{1}{2} W \bm{g},
> $$
>
> with $\mathbf{W}$ the Ricci tensor, $\bm{g}$ the metric tensor and $W$ the Ricci scalar.
The **Einstein tensor** encapsulates the curvature of the manifold while satisfying the posed conditions (Lovelock's theorem). Such as the following proposition.
> *Proposition 2*: the Einstein tensor $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ has the following properties
>
> 1. $\mathbf{G} = G_{|ij|} dx^i \vee dx^j$,
> 2. $D_i \mathbf{G} = 0$.
??? note "*Proof*:"
Will be added later.
## Energy and momentum
> *Definition 3*: let $\mathbf{T}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{T^*M}) \to F$ denote the **energy momentum tensor** which is defined by the following properties,
>
> 1. $\mathbf{T} = T^{|ij|} \partial_i \vee \partial_j \in \bigvee^2(\mathrm{TM})$,
> 2. $D_i \mathbf{T} = 0$.
Property 1. is a result of the zero torsion axiom and property 2. is the demand of conservation of energy and momentum.
The **energy momentum tensor** describes the matter distribution at each event in spacetime. It acts as a *source* term.
## Einstein field equations
> *Axiom 2*: the Einstein tensor $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ relates to the energy momentum tensor $\mathbf{T}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{T^*M}) \to F$ by
>
> $$
> \mathbf{G} + \Lambda \bm{g} = \kappa \mathbf{T},
> $$
>
> with $\kappa = \frac{8 \pi G}{c^4}$ and $\Lambda, G$ the cosmological and gravitational constants respectively.
This equation (these equations) relate the geometry of spacetime to the distribution of matter within it. For a given $\mathbf{T}$ the system of equations can solve for $\bm{g}$ and vice versa.

View file

@ -1 +0,0 @@
# Wave geometry

View file

@ -0,0 +1,9 @@
# Formalism of equilibrium thermodynamics
Thermodynamics, the study of the behaviour of physical systems in terms of their macroscopic observables. A physical theory that perhaps is closest to our macroscopic perception of the physical world.
## References
* A.M. Steane, *Thermodynamics*, Oxford University Press, 2017.
* Dep. of Physics Oxford University, *Basics of Thermodynamics*.
* D.A. Lavis and R. Frigg, *The Fundamentals of Thermodynamics*, Springer, 2025.

View file

@ -74,8 +74,8 @@ nav:
- 'Welcome': index.md
- 'Mathematics':
- mathematics/index.md
- 'Logic': mathematics/logic.md
- 'Set theory':
- 'Logic': mathematics/logic.md #Extend
- 'Set theory': # Update
- 'Sets': mathematics/set-theory/sets.md
- 'Relations': mathematics/set-theory/relations.md
- 'Maps': mathematics/set-theory/maps.md
@ -85,9 +85,11 @@ nav:
- 'Cardinalities': mathematics/set-theory/cardinalities.md
- 'Additional axioms': mathematics/set-theory/additional-axioms.md
- 'Number theory':
- 'Integer arithmetic': mathematics/number-theory/integer-arithmetic.md
- 'Modular arithmetic': mathematics/number-theory/modular-arithmetic.md
- 'Integer arithmetic': mathematics/number-theory/integer-arithmetic.md #Add
- 'Modular arithmetic': mathematics/number-theory/modular-arithmetic.md #Add
- 'Complex numbers': mathematics/number-theory/complex-numbers.md
#- 'Group theory':
#- 'Ring theory':
- 'Linear algebra':
- 'Systems of linear equations': mathematics/linear-algebra/systems-of-linear-equations.md
- 'Matrices':
@ -104,8 +106,10 @@ nav:
- 'Tensors':
- 'Tensor formalism': mathematics/linear-algebra/tensors/tensor-formalism.md
- 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md #Update
- 'Tensor transformations': mathematics/linear-algebra/tensors/tensor-transformations.md
#- 'Analysis':
#- 'Complex analysis':
- 'Functional analysis':
- 'Metric spaces':
- 'Metric spaces': mathematics/functional-analysis/metric-spaces/metric-spaces.md
@ -133,8 +137,9 @@ nav:
- 'Laguerre polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/laguerre-polynomials.md
- 'Representations of functionals': mathematics/functional-analysis/inner-product-spaces/representations-of-functionals.md
- 'Operator classes': mathematics/functional-analysis/inner-product-spaces/operator-classes.md
- 'Topology':
- 'Fiber bundles': mathematics/topology/fiber-bundles.md
#- 'Measure theory':
#- 'Probability theory':
#- 'Statistics':
- 'Calculus':
- 'Limits': mathematics/calculus/limits.md
- 'Continuity': mathematics/calculus/continuity.md
@ -156,13 +161,17 @@ nav:
- 'Taylor polynomials': mathematics/multivariable-calculus/taylor-polynomials.md
- 'Extrema': mathematics/multivariable-calculus/extrema.md
- 'Integration': mathematics/multivariable-calculus/integration.md
#- 'Vector calculus':
#- 'Ordinary difference equations':
- 'Ordinary differential equations':
- 'First order differential equations': mathematics/ordinary-differential-equations/first-order-ode.md
- 'Second order differential equations': mathematics/ordinary-differential-equations/second-order-ode.md
- 'Systems of linear differential equations': mathematics/ordinary-differential-equations/systems-of-linear-ode.md
- 'The Laplace transform': mathematics/ordinary-differential-equations/laplace-transform.md
#- 'Partial differential equations':
- 'Differential geometry':
- 'Differential manifolds': mathematics/differential-geometry/differential-manifolds.md
- 'Topological notions': mathematics/differential-geometry/topological-notions.md
- 'Tangent spaces': mathematics/differential-geometry/tangent-spaces.md
- 'Transformations': mathematics/differential-geometry/transformations.md
- 'Lengths and volumes': mathematics/differential-geometry/lengths-and-volumes.md
@ -175,25 +184,28 @@ nav:
- physics/index.md
- 'Classical Mechanics':
- 'Newtonian mechanics':
- 'Newtonian formalism': physics/classical-mechanics/newtonian-mechanics/newtonian-formalism.md
- 'Momentum': physics/classical-mechanics/newtonian-mechanics/momentum.md
- 'Energy': physics/classical-mechanics/newtonian-mechanics/energy.md
- 'Rotation': physics/classical-mechanics/newtonian-mechanics/rotation.md
- 'Particle systems': physics/classical-mechanics/newtonian-mechanics/particle-systems.md
- 'Newtonian formalism': physics/classical-mechanics/newtonian-mechanics/newtonian-formalism.md #Update
- 'Momentum': physics/classical-mechanics/newtonian-mechanics/momentum.md #Update
- 'Energy': physics/classical-mechanics/newtonian-mechanics/energy.md #Update
- 'Rotation': physics/classical-mechanics/newtonian-mechanics/rotation.md #Update
- 'Particle systems': physics/classical-mechanics/newtonian-mechanics/particle-systems.md #Update
- 'Lagrangian mechanics':
- 'Lagrangian formalism': physics/classical-mechanics/lagrangian-mechanics/lagrangian-formalism.md
- 'Lagrange equations': physics/classical-mechanics/lagrangian-mechanics/lagrange-equations.md
- 'Lagrange generalizations': physics/classical-mechanics/lagrangian-mechanics/lagrange-generalizations.md
- 'Lagrangian formalism': physics/classical-mechanics/lagrangian-mechanics/lagrangian-formalism.md #Update
- 'Lagrange equations': physics/classical-mechanics/lagrangian-mechanics/lagrange-equations.md #Update
- 'Lagrange generalizations': physics/classical-mechanics/lagrangian-mechanics/lagrange-generalizations.md #Update
- 'Hamiltonian mechanics':
- 'Hamiltonian formalism': physics/classical-mechanics/hamiltonian-mechanics/hamiltonian-formalism.md
- 'Equations of Hamilton': physics/classical-mechanics/hamiltonian-mechanics/equations-of-hamilton.md
- 'Equations of Hamilton': physics/classical-mechanics/hamiltonian-mechanics/equations-of-hamilton.md #Update
#- 'Field theory':
- 'Thermodynamics':
- 'Equilibrium formalism': physics/thermodynamics/equilibrium-formalism.md
- 'Non-equilibrium formalism': physics/thermodynamics/non-equilibrium-formalism.md
#- 'Statistical mechanics':
- 'Electromagnetism':
- 'Electrostatics': physics/electromagnetism/electrostatics.md
- 'Magnetostatics': physics/electromagnetism/magnetostatics.md
- 'Electromagnetic dynamics': physics/electromagnetism/electromagnetic-dynamics.md
- 'Optics':
- 'Optics': #Update
- 'Waves': physics/electromagnetism/optics/waves.md
- 'Electromagnetic waves': physics/electromagnetism/optics/electromagnetic-waves.md
- 'Reflection and refraction': physics/electromagnetism/optics/reflection-and-refraction.md
@ -202,24 +214,19 @@ nav:
- 'Diffraction': physics/electromagnetism/optics/diffraction.md
- 'Polarisation': physics/electromagnetism/optics/polarisation.md
#- 'Quantum mechanics':
# - 'Statistical mechanics':
- 'Spacetime':
- 'Special formalism': physics/spacetime/special-formalism.md
- 'General formalism': physics/spacetime/general-formalism.md
- 'Schwarzschild geometry': physics/spacetime/schwarzschild-geometry.md
- 'Kerr geometry': physics/spacetime/kerr-geometry.md
- 'Isotropic geometry': physics/spacetime/isotropic-geometry.md
# - 'Relativistic mechanics':
# - 'Relativistic formalism': physics/relativistic-mechanics/relativistic-formalism.md
# - 'Thermodynamics':
# - 'Classical thermodynamics'
# - 'Statistical thermodynamics'
- 'Mathematical physics':
- 'Error analysis':
##
- 'Mathematical physics': #Should be removed
- 'Error analysis': #Move to statistics
- 'Error analysis formalism': physics/mathematical-physics/error-analysis/formalism.md
- 'Maximum error': physics/mathematical-physics/error-analysis/maximum-error.md
- 'Standard error': physics/mathematical-physics/error-analysis/standard-error.md
- 'Signal analysis':
- 'Signal analysis': #Partly move to functional analysis, partly to ??
- 'Signals': physics/mathematical-physics/signal-analysis/signals.md
- 'Fourier series': physics/mathematical-physics/signal-analysis/fourier-series.md
- 'Fourier transform': physics/mathematical-physics/signal-analysis/fourier-transform.md
@ -227,7 +234,7 @@ nav:
- 'Amplitude modulation': physics/mathematical-physics/signal-analysis/amplitude-modulation.md
- 'Signal filters': physics/mathematical-physics/signal-analysis/signal-filters.md
- 'Systems': physics/mathematical-physics/signal-analysis/systems.md
- 'Vector analysis':
- 'Vector analysis': #Update and move to vector calculus
- 'Vectors': physics/mathematical-physics/vector-analysis/vectors.md
- 'Curves': physics/mathematical-physics/vector-analysis/curves.md
- 'Curvilinear coordinates': physics/mathematical-physics/vector-analysis/curvilinear-coordinates.md