an update of various things
This commit is contained in:
parent
7d7fea70c9
commit
0e188f5a2c
10 changed files with 165 additions and 197 deletions
|
|
@ -1,4 +1,6 @@
|
||||||
# Fiber bundles
|
# Topological notions
|
||||||
|
|
||||||
|
## Fiber bundles
|
||||||
|
|
||||||
Let $X$ be a manifold over a field $F$.
|
Let $X$ be a manifold over a field $F$.
|
||||||
|
|
||||||
|
|
@ -45,7 +45,7 @@ $$
|
||||||
|
|
||||||
## Outer product
|
## Outer product
|
||||||
|
|
||||||
> *Definition 3*: the outer product $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
|
> *Definition 3*: the **outer product** $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> (f \otimes g)(x,y) = f(x) g(y),
|
> (f \otimes g)(x,y) = f(x) g(y),
|
||||||
|
|
@ -133,9 +133,45 @@ By definition tensors are basis independent. Holors are basis dependent.
|
||||||
|
|
||||||
We have from theorem 2 that the outer product of two tensors yields another tensor, with ranks adding up.
|
We have from theorem 2 that the outer product of two tensors yields another tensor, with ranks adding up.
|
||||||
|
|
||||||
|
## Interior product
|
||||||
|
|
||||||
|
> *Definition 5*: the **left interior product** $f \llcorner \alpha: Y \to F$ of a scalar function $f:X \times Y \to F$ and a scalar $\alpha \in X$ is defined as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> (f \llcorner \alpha)(y) = f(\alpha,y) \qquad \forall y \in Y,
|
||||||
|
> $$
|
||||||
|
>
|
||||||
|
> and the **right interior product** $f \lrcorner \alpha: X \to F$ for a scalar $\alpha \in Y$ is defined as
|
||||||
|
>
|
||||||
|
> $$
|
||||||
|
> (f \lrcorner \alpha)(x) = f(x,\alpha) \qquad \forall x \in X.
|
||||||
|
> $$
|
||||||
|
|
||||||
|
Note that neither interior product is associative, commutatitive and only distributive in the field addition.
|
||||||
|
|
||||||
|
With the interior product we can partially contract a tensor (i.e. reduce its basis) with a (co)vector. Consider $\mathbf{T} \in \mathscr{T}^2_0(V)$ then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\mathbf{T} \llcorner \mathbf{\hat v} &= T^{ij} \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_i) \mathbf{e}_j,\\
|
||||||
|
&= v_i T^{ij} \mathbf{e}_j.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
or similarly
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\mathbf{T} \lrcorner \mathbf{\hat v} &= T^{ij} \mathbf{e}_i \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_j),\\
|
||||||
|
&= v_j T^{ij} \mathbf{e}_i.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
for all $\mathbf{\hat v} \in V^*$.
|
||||||
|
|
||||||
## Inner product
|
## Inner product
|
||||||
|
|
||||||
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
|
> *Definition 6*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
|
||||||
>
|
>
|
||||||
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
|
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
|
||||||
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
|
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
|
||||||
|
|
@ -144,7 +180,7 @@ We have from theorem 2 that the outer product of two tensors yields another tens
|
||||||
|
|
||||||
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
|
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
|
||||||
|
|
||||||
> *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
|
> *Definition 7*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> g_{ij} = \bm{g}(\mathbf{e}_i, \mathbf{e}_j).
|
> g_{ij} = \bm{g}(\mathbf{e}_i, \mathbf{e}_j).
|
||||||
|
|
@ -227,7 +263,7 @@ $$
|
||||||
|
|
||||||
with $u^j = g^{ij} u_i$.
|
with $u^j = g^{ij} u_i$.
|
||||||
|
|
||||||
> *Definition 7*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
|
> *Definition 8*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.
|
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
# Tensor symmetries
|
# Tensor symmetries
|
||||||
|
|
||||||
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field F and a pseudo inner product $\bm{g}$ on $V$.
|
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
|
||||||
|
|
||||||
## Symmetric tensors
|
## Symmetric tensors
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -12,7 +12,7 @@ so that $\mathbf{\hat e}^i = A^i_j \mathbf{\hat f}^j$.
|
||||||
|
|
||||||
## Transformation of tensors
|
## Transformation of tensors
|
||||||
|
|
||||||
Recall from the section of [tensor-formalism]() that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
|
Recall from the section of [tensor-formalism](tensor-formalism.md) that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
|
||||||
|
|
||||||
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}^p_q(V)$ be a tensor with $p=q=1$ without loss of generality and $B = A^{-1}$. Then $\mathbf{T}$ may be decomposed into
|
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}^p_q(V)$ be a tensor with $p=q=1$ without loss of generality and $B = A^{-1}$. Then $\mathbf{T}$ may be decomposed into
|
||||||
>
|
>
|
||||||
|
|
@ -26,12 +26,20 @@ Recall from the section of [tensor-formalism]() that a holor depends on the chos
|
||||||
> with the holors related by
|
> with the holors related by
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> \overline T^i_j = B^i_k A^j_l T^k_l.
|
> \overline T^i_j = B^i_k A^l_j T^k_l.
|
||||||
> $$
|
> $$
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
We have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\mathbf{T} &= T^i_j B^k_i \mathbf{f}_k \otimes A^j_l \mathbf{\hat f}^l,\\
|
||||||
|
&= B^k_i A^j_l T^i_j \mathbf{f}_k \otimes \mathbf{\hat f}^l,\\
|
||||||
|
&= \overline T^i_j \mathbf{f}_i \otimes \mathbf{\hat f}^j.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
The homogeneous nature of the tensor transformation implies that a holor equation of the form $T^i_j = 0$ holds relative to any basis if it holds relative to a particular one.
|
The homogeneous nature of the tensor transformation implies that a holor equation of the form $T^i_j = 0$ holds relative to any basis if it holds relative to a particular one.
|
||||||
|
|
||||||
|
|
@ -54,7 +62,17 @@ The homogeneous nature of the tensor transformation implies that a holor equatio
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
We have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\bm{\mu} &= \mu_{i_1\dots i_n} A^{i_1}_{j_1} \mathbf{\hat f}^{j_1} \otimes \dots \otimes A^{i_n}_{j_n} \mathbf{\hat f}^{j_n},\\
|
||||||
|
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} \mu_{i_1\dots i_n} \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||||
|
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} [i_1,\dots,i_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||||
|
&= \det(A) [j_1,\dots,j_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||||
|
&= \overline \mu_{i_1 \dots i_n} \mathbf{\hat f}^{i_1} \otimes \dots \otimes \mathbf{\hat f}^{i_1}.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So that if $\bm{\mu}(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$, then $\bm{\mu}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \det(A).$
|
Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So that if $\bm{\mu}(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$, then $\bm{\mu}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \det(A).$
|
||||||
|
|
||||||
|
|
@ -75,10 +93,6 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
|
||||||
>
|
>
|
||||||
> then $\mu_{i_1 \dots i_n} = \overline \mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ is an invariant holor.
|
> then $\mu_{i_1 \dots i_n} = \overline \mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ is an invariant holor.
|
||||||
|
|
||||||
??? note "*Proof*:"
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
## Transformation of Levi-Civita form
|
## Transformation of Levi-Civita form
|
||||||
|
|
||||||
> *Theorem 3*: let $\bm{\epsilon} \in \bigwedge_n(V)$ be the Levi-Civita tensor with
|
> *Theorem 3*: let $\bm{\epsilon} \in \bigwedge_n(V)$ be the Levi-Civita tensor with
|
||||||
|
|
@ -94,4 +108,4 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
Follows directly from the definition $\bm{\epsilon} = \sqrt{g} \bm{\mu}$.
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
# Volume forms
|
# Volume forms
|
||||||
|
|
||||||
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n,$ a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$ and a pseudo inner product $\bm{g}$ on $V.$
|
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
|
||||||
|
|
||||||
## n-forms
|
## n-forms
|
||||||
|
|
||||||
|
|
@ -12,7 +12,7 @@ We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim
|
||||||
>
|
>
|
||||||
> then $\bm{\mu}$ is the **unit volume form** with respect to the basis $\{\mathbf{e}_i\}$.
|
> then $\bm{\mu}$ is the **unit volume form** with respect to the basis $\{\mathbf{e}_i\}$.
|
||||||
|
|
||||||
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in \mathbb{K}$.
|
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in F$.
|
||||||
|
|
||||||
> *Proposition 1*: the unit volume form $\bm{\mu} \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$ may be given by
|
> *Proposition 1*: the unit volume form $\bm{\mu} \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$ may be given by
|
||||||
>
|
>
|
||||||
|
|
@ -27,7 +27,31 @@ Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
Let $\pi = [\pi(1),\dots,\pi(n)]$ be any permutation of the set $\{1,\dots,n\}$, the unit volume form $\bm{\mu}$ is defined as
|
||||||
|
|
||||||
|
$$
|
||||||
|
\bm{\mu}(\mathbf{e}_{\pi(1)},\dots,\mathbf{e}_{\pi(2)}) = \mathrm{sign}(\pi),
|
||||||
|
$$
|
||||||
|
|
||||||
|
thus
|
||||||
|
|
||||||
|
$$
|
||||||
|
\bm{\mu} = \mu_{i_1\dots i_n} \mathbf{\hat e}^{i_1} \otimes \dots \otimes \mathbf{\hat e}^{i_n}.
|
||||||
|
$$
|
||||||
|
|
||||||
|
Furthermore $\mathscr{A}(\bm{\mu}) = \bm{\mu}$. Then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\bm{\mu} = \mu_{i_1\dots i_n} \frac{1}{n!} \mathbf{\hat e}^{i_1} \wedge \dots \wedge \mathbf{\hat e}^{i_n},
|
||||||
|
$$
|
||||||
|
|
||||||
|
and going back to the definition only requires us to consider
|
||||||
|
|
||||||
|
$$
|
||||||
|
\bm{\mu} = \mathbf{\hat e}^{1} \wedge \dots \wedge \mathbf{\hat e}^{n},
|
||||||
|
$$
|
||||||
|
|
||||||
|
such that $\mu_{i_1\dots i_n} = [i_1,\dots,i_n]$.
|
||||||
|
|
||||||
The normalisation of the unit volume form $\bm{\mu}$ requires a basis. Consequently, the identification $\mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ holds only relative to the basis.
|
The normalisation of the unit volume form $\bm{\mu}$ requires a basis. Consequently, the identification $\mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ holds only relative to the basis.
|
||||||
|
|
||||||
|
|
@ -47,7 +71,7 @@ $$
|
||||||
|
|
||||||
by convention, to resolve ambiguity with respect to the meaning of $\mu_{i_1 \dots i_n}$ without using another symbol or extra accents.
|
by convention, to resolve ambiguity with respect to the meaning of $\mu_{i_1 \dots i_n}$ without using another symbol or extra accents.
|
||||||
|
|
||||||
Using theorem 2 in the section of [tensor symmetries]() we may state the following.
|
Using theorem 2 in the section of [tensor symmetries](tensor-symmetries.md) we may state the following.
|
||||||
|
|
||||||
> *Proposition 2*: let $(V, \bm{\mu})$ be a vector space with an oriented volume form, then we have
|
> *Proposition 2*: let $(V, \bm{\mu})$ be a vector space with an oriented volume form, then we have
|
||||||
>
|
>
|
||||||
|
|
@ -59,7 +83,15 @@ Using theorem 2 in the section of [tensor symmetries]() we may state the followi
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
We have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\bm{\mu}(\mathbf{v}_1,\dots,\mathbf{v}_n) &= \mu_{i_1\dots i_n} \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
|
||||||
|
&= [i_1,\dots,i_n] \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
|
||||||
|
&= \det\big(\mathbf{k}(\mathbf{\hat e}^i,\mathbf{v}_j)\big).
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
Which reveals the role of the Kronecker tensor and thus the role of the dual space in the definition of $\bm{\mu}$. We may also conclude that an oriented volume $\bm{\mu} \in \bigwedge_n(V)$ on a vector space $V$ does not require an inner product.
|
Which reveals the role of the Kronecker tensor and thus the role of the dual space in the definition of $\bm{\mu}$. We may also conclude that an oriented volume $\bm{\mu} \in \bigwedge_n(V)$ on a vector space $V$ does not require an inner product.
|
||||||
|
|
||||||
|
|
@ -73,9 +105,9 @@ From proposition 2 it may also be observed that within a geometrical context the
|
||||||
> \bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k(\mathbf{v}_{k+1}, \dots, \mathbf{v}_n) = \bm{\mu}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n),
|
> \bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k(\mathbf{v}_{k+1}, \dots, \mathbf{v}_n) = \bm{\mu}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n),
|
||||||
> $$
|
> $$
|
||||||
>
|
>
|
||||||
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$ with $\lrcorner$ the insert operator.
|
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$.
|
||||||
|
|
||||||
It follows that $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
|
It follows that the $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
|
@ -120,7 +152,16 @@ then we have $\epsilon_{i_1 \dots i_n} = \sqrt{g} \mu_{i_1 \dots i_n}$ and $\eps
|
||||||
|
|
||||||
??? note "*Proof*:"
|
??? note "*Proof*:"
|
||||||
|
|
||||||
Will be added later.
|
The reciprocal Levi-Civita tensor may be written as
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\mathbf{g}(\bm{\epsilon}) &= \sqrt{g} \mathbf{g}(\mathbf{\hat e}^1) \wedge \dots \wedge \mathbf{g}(\mathbf{\hat e}_n),\\
|
||||||
|
&= \sqrt{g} g^{1i_1} \mathbf{e}_{i_1} \wedge \dots \wedge g^{ni_n} \mathbf{e}_{i_n},\\
|
||||||
|
&= \sqrt{g} \det (G^{-1}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n,\\
|
||||||
|
&= \frac{1}{\sqrt{g}} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n.
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
We may decompose the reciprocal Levi-Civita tensor by
|
We may decompose the reciprocal Levi-Civita tensor by
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,140 +0,0 @@
|
||||||
# Relativistic formalism of mechanics
|
|
||||||
|
|
||||||
From now on, we refer to space and time as spacetime.
|
|
||||||
|
|
||||||
## Fundamental assumptions
|
|
||||||
|
|
||||||
> *Postulate 1*: spacetime is continuous.
|
|
||||||
|
|
||||||
Implying that there is no fundamental limit to the precision of measurements of spatial positions, velocities and time intervals.
|
|
||||||
|
|
||||||
> *Postulate 2*: there exists a [neighbourhood]() in spacetime in which the axioms of [Euclidean]() geometry hold.
|
|
||||||
|
|
||||||
A reformulation of the postulate in the Newtonian formalism compatible with the new formulation.
|
|
||||||
|
|
||||||
> *Postulate 3*: all physical axioms have the same form in all inertial frames.
|
|
||||||
|
|
||||||
This principle is dependent on the definition of an inertial frame, which in my view is not optimal. It will have to be improved.
|
|
||||||
|
|
||||||
> *Principle 1*: spacetime is not instantaneous.
|
|
||||||
|
|
||||||
Implying that there exists a maximum speed with which information can travel.
|
|
||||||
|
|
||||||
> *Axiom 1*: spacetime is represented by a torsion-free pseudo Riemannian manifold $M$ with 3 spacial dimensions and 1 time dimension.
|
|
||||||
|
|
||||||
Torsion-free means that $\mathbf{T} = \mathbf{0}$, the [torsion tensor]() is always zero.
|
|
||||||
|
|
||||||
## Lorentz transformations
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
## Results from the fundamental assumptions
|
|
||||||
|
|
||||||
> *Theorem 1*: let $\bm{g} \in \Gamma(\mathrm{TM})$ be the pseudo Riemannian inner product on $\mathrm{TM}$, then it follows that from [Hamilton's principle]() that the covariant derivative is equal to zero:
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \forall i \in \{1, 2, 3, 4\}: D_i \bm{g} = \mathbf{0},
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> which is called *metric compatibility*.
|
|
||||||
|
|
||||||
??? note "*Proof*:"
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
A linear connection $\nabla$ on a torsion-free pseudo Riemannian manifold with metric compatibility is called the **Levi-Civita connection** with its linear connection symbols denoted as the **Christoffel symbols**.
|
|
||||||
|
|
||||||
> *Theorem 2*: the Christoffel symbols $\Gamma_{ij}^k$ (of a Levi-Civita connection) are covariantly symmetric
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \Gamma_{ij}^k = \Gamma_{ji}^k,
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> for all $(i,j,k) \in \{1,2,3,4\}^3$, and may be given by
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \Gamma_{ij}^k = \frac{1}{2} g^{kl} (\partial_i g_{ij} + \partial_j g_{il} - \partial_l g_{ij}),
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> for all $\bm{g} = g_{ij} dx^i \otimes dx^j \in \Gamma(\mathrm{TM})$.
|
|
||||||
|
|
||||||
??? note "*Proof*:"
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
Similarly, we have the following.
|
|
||||||
|
|
||||||
> *Proposition 1*: let $\mathbf{R}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{TM})^3 \to F$ be the Riemann curvature tensor on a manifold $M$ over a field $F$, defined under the Levi-Civita connection. Then it may be decomposed by
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \mathbf{R} = \frac{1}{8} R^i_{jkl} (\partial_i \wedge dx^j) \vee (dx^k \wedge dx^l).
|
|
||||||
> $$
|
|
||||||
|
|
||||||
??? note "*Proof*:"
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
Such that $R^i_{jkl}$ has a dimension of
|
|
||||||
|
|
||||||
$$
|
|
||||||
\frac{4^2 (4^2 - 1)}{12} = 20.
|
|
||||||
$$
|
|
||||||
|
|
||||||
## Curvature
|
|
||||||
|
|
||||||
> *Definition 1*: let $\mathbf{W}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ denote the **Ricci tensor** which is defined as
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \begin{align*}
|
|
||||||
> \mathbf{W} &= \frac{1}{2} R_{ijk}^k dx^i \vee dx^j,\\
|
|
||||||
> &= \frac{1}{2} W_{ij} dx^i \vee dx^j,
|
|
||||||
> \end{align*}
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> with $R_{ijk}^k$ the contracted Riemann holor and let $W$ be the **Ricci scalar** be defined as $W = W_{ij} g^{ij}$ with $g^{ij}$ the dual metric holor.
|
|
||||||
|
|
||||||
The Ricci tensor and scalar are normally denoted by the symbol $R$ but this would impose confusion with the curvature tensor, therefore it has been chosen to assign symbol $W$ to the Ricci tensor and scalar.
|
|
||||||
|
|
||||||
The **Ricci tensor** is a contraction (simplification) of the Riemann curvature tensor. It provides a way to summarize the curvature of a manifold by focusing on how volumes change in the presence of curvature. The **Ricci scalar** summarizes the curvature information contained in the **Ricci tensor**.
|
|
||||||
|
|
||||||
> *Definition 2*: let $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ denote the **Einstein tensor** which is defined as
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \mathbf{G} = \mathbf{W} - \frac{1}{2} W \bm{g},
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> with $\mathbf{W}$ the Ricci tensor, $\bm{g}$ the metric tensor and $W$ the Ricci scalar.
|
|
||||||
|
|
||||||
The **Einstein tensor** encapsulates the curvature of the manifold while satisfying the posed conditions (Lovelock's theorem). Such as the following proposition.
|
|
||||||
|
|
||||||
> *Proposition 2*: the Einstein tensor $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ has the following properties
|
|
||||||
>
|
|
||||||
> 1. $\mathbf{G} = G_{|ij|} dx^i \vee dx^j$,
|
|
||||||
> 2. $D_i \mathbf{G} = 0$.
|
|
||||||
|
|
||||||
??? note "*Proof*:"
|
|
||||||
|
|
||||||
Will be added later.
|
|
||||||
|
|
||||||
## Energy and momentum
|
|
||||||
|
|
||||||
> *Definition 3*: let $\mathbf{T}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{T^*M}) \to F$ denote the **energy momentum tensor** which is defined by the following properties,
|
|
||||||
>
|
|
||||||
> 1. $\mathbf{T} = T^{|ij|} \partial_i \vee \partial_j \in \bigvee^2(\mathrm{TM})$,
|
|
||||||
> 2. $D_i \mathbf{T} = 0$.
|
|
||||||
|
|
||||||
Property 1. is a result of the zero torsion axiom and property 2. is the demand of conservation of energy and momentum.
|
|
||||||
|
|
||||||
The **energy momentum tensor** describes the matter distribution at each event in spacetime. It acts as a *source* term.
|
|
||||||
|
|
||||||
## Einstein field equations
|
|
||||||
|
|
||||||
> *Axiom 2*: the Einstein tensor $\mathbf{G}: \Gamma(\mathrm{TM}) \times \Gamma(\mathrm{TM}) \to F$ relates to the energy momentum tensor $\mathbf{T}: \Gamma(\mathrm{T^*M}) \times \Gamma(\mathrm{T^*M}) \to F$ by
|
|
||||||
>
|
|
||||||
> $$
|
|
||||||
> \mathbf{G} + \Lambda \bm{g} = \kappa \mathbf{T},
|
|
||||||
> $$
|
|
||||||
>
|
|
||||||
> with $\kappa = \frac{8 \pi G}{c^4}$ and $\Lambda, G$ the cosmological and gravitational constants respectively.
|
|
||||||
|
|
||||||
This equation (these equations) relate the geometry of spacetime to the distribution of matter within it. For a given $\mathbf{T}$ the system of equations can solve for $\bm{g}$ and vice versa.
|
|
||||||
|
|
@ -1 +0,0 @@
|
||||||
# Wave geometry
|
|
||||||
9
docs/physics/thermodynamics/equilibrium-formalism.md
Normal file
9
docs/physics/thermodynamics/equilibrium-formalism.md
Normal file
|
|
@ -0,0 +1,9 @@
|
||||||
|
# Formalism of equilibrium thermodynamics
|
||||||
|
|
||||||
|
Thermodynamics, the study of the behaviour of physical systems in terms of their macroscopic observables. A physical theory that perhaps is closest to our macroscopic perception of the physical world.
|
||||||
|
|
||||||
|
## References
|
||||||
|
|
||||||
|
* A.M. Steane, *Thermodynamics*, Oxford University Press, 2017.
|
||||||
|
* Dep. of Physics Oxford University, *Basics of Thermodynamics*.
|
||||||
|
* D.A. Lavis and R. Frigg, *The Fundamentals of Thermodynamics*, Springer, 2025.
|
||||||
0
docs/physics/thermodynamics/non-equilibrium-formalism.md
Normal file
0
docs/physics/thermodynamics/non-equilibrium-formalism.md
Normal file
67
mkdocs.yml
67
mkdocs.yml
|
|
@ -74,8 +74,8 @@ nav:
|
||||||
- 'Welcome': index.md
|
- 'Welcome': index.md
|
||||||
- 'Mathematics':
|
- 'Mathematics':
|
||||||
- mathematics/index.md
|
- mathematics/index.md
|
||||||
- 'Logic': mathematics/logic.md
|
- 'Logic': mathematics/logic.md #Extend
|
||||||
- 'Set theory':
|
- 'Set theory': # Update
|
||||||
- 'Sets': mathematics/set-theory/sets.md
|
- 'Sets': mathematics/set-theory/sets.md
|
||||||
- 'Relations': mathematics/set-theory/relations.md
|
- 'Relations': mathematics/set-theory/relations.md
|
||||||
- 'Maps': mathematics/set-theory/maps.md
|
- 'Maps': mathematics/set-theory/maps.md
|
||||||
|
|
@ -85,9 +85,11 @@ nav:
|
||||||
- 'Cardinalities': mathematics/set-theory/cardinalities.md
|
- 'Cardinalities': mathematics/set-theory/cardinalities.md
|
||||||
- 'Additional axioms': mathematics/set-theory/additional-axioms.md
|
- 'Additional axioms': mathematics/set-theory/additional-axioms.md
|
||||||
- 'Number theory':
|
- 'Number theory':
|
||||||
- 'Integer arithmetic': mathematics/number-theory/integer-arithmetic.md
|
- 'Integer arithmetic': mathematics/number-theory/integer-arithmetic.md #Add
|
||||||
- 'Modular arithmetic': mathematics/number-theory/modular-arithmetic.md
|
- 'Modular arithmetic': mathematics/number-theory/modular-arithmetic.md #Add
|
||||||
- 'Complex numbers': mathematics/number-theory/complex-numbers.md
|
- 'Complex numbers': mathematics/number-theory/complex-numbers.md
|
||||||
|
#- 'Group theory':
|
||||||
|
#- 'Ring theory':
|
||||||
- 'Linear algebra':
|
- 'Linear algebra':
|
||||||
- 'Systems of linear equations': mathematics/linear-algebra/systems-of-linear-equations.md
|
- 'Systems of linear equations': mathematics/linear-algebra/systems-of-linear-equations.md
|
||||||
- 'Matrices':
|
- 'Matrices':
|
||||||
|
|
@ -104,8 +106,10 @@ nav:
|
||||||
- 'Tensors':
|
- 'Tensors':
|
||||||
- 'Tensor formalism': mathematics/linear-algebra/tensors/tensor-formalism.md
|
- 'Tensor formalism': mathematics/linear-algebra/tensors/tensor-formalism.md
|
||||||
- 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md
|
- 'Tensor symmetries': mathematics/linear-algebra/tensors/tensor-symmetries.md
|
||||||
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md
|
- 'Volume forms': mathematics/linear-algebra/tensors/volume-forms.md #Update
|
||||||
- 'Tensor transformations': mathematics/linear-algebra/tensors/tensor-transformations.md
|
- 'Tensor transformations': mathematics/linear-algebra/tensors/tensor-transformations.md
|
||||||
|
#- 'Analysis':
|
||||||
|
#- 'Complex analysis':
|
||||||
- 'Functional analysis':
|
- 'Functional analysis':
|
||||||
- 'Metric spaces':
|
- 'Metric spaces':
|
||||||
- 'Metric spaces': mathematics/functional-analysis/metric-spaces/metric-spaces.md
|
- 'Metric spaces': mathematics/functional-analysis/metric-spaces/metric-spaces.md
|
||||||
|
|
@ -133,8 +137,9 @@ nav:
|
||||||
- 'Laguerre polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/laguerre-polynomials.md
|
- 'Laguerre polynomials': mathematics/functional-analysis/inner-product-spaces/polynomials/laguerre-polynomials.md
|
||||||
- 'Representations of functionals': mathematics/functional-analysis/inner-product-spaces/representations-of-functionals.md
|
- 'Representations of functionals': mathematics/functional-analysis/inner-product-spaces/representations-of-functionals.md
|
||||||
- 'Operator classes': mathematics/functional-analysis/inner-product-spaces/operator-classes.md
|
- 'Operator classes': mathematics/functional-analysis/inner-product-spaces/operator-classes.md
|
||||||
- 'Topology':
|
#- 'Measure theory':
|
||||||
- 'Fiber bundles': mathematics/topology/fiber-bundles.md
|
#- 'Probability theory':
|
||||||
|
#- 'Statistics':
|
||||||
- 'Calculus':
|
- 'Calculus':
|
||||||
- 'Limits': mathematics/calculus/limits.md
|
- 'Limits': mathematics/calculus/limits.md
|
||||||
- 'Continuity': mathematics/calculus/continuity.md
|
- 'Continuity': mathematics/calculus/continuity.md
|
||||||
|
|
@ -156,13 +161,17 @@ nav:
|
||||||
- 'Taylor polynomials': mathematics/multivariable-calculus/taylor-polynomials.md
|
- 'Taylor polynomials': mathematics/multivariable-calculus/taylor-polynomials.md
|
||||||
- 'Extrema': mathematics/multivariable-calculus/extrema.md
|
- 'Extrema': mathematics/multivariable-calculus/extrema.md
|
||||||
- 'Integration': mathematics/multivariable-calculus/integration.md
|
- 'Integration': mathematics/multivariable-calculus/integration.md
|
||||||
|
#- 'Vector calculus':
|
||||||
|
#- 'Ordinary difference equations':
|
||||||
- 'Ordinary differential equations':
|
- 'Ordinary differential equations':
|
||||||
- 'First order differential equations': mathematics/ordinary-differential-equations/first-order-ode.md
|
- 'First order differential equations': mathematics/ordinary-differential-equations/first-order-ode.md
|
||||||
- 'Second order differential equations': mathematics/ordinary-differential-equations/second-order-ode.md
|
- 'Second order differential equations': mathematics/ordinary-differential-equations/second-order-ode.md
|
||||||
- 'Systems of linear differential equations': mathematics/ordinary-differential-equations/systems-of-linear-ode.md
|
- 'Systems of linear differential equations': mathematics/ordinary-differential-equations/systems-of-linear-ode.md
|
||||||
- 'The Laplace transform': mathematics/ordinary-differential-equations/laplace-transform.md
|
- 'The Laplace transform': mathematics/ordinary-differential-equations/laplace-transform.md
|
||||||
|
#- 'Partial differential equations':
|
||||||
- 'Differential geometry':
|
- 'Differential geometry':
|
||||||
- 'Differential manifolds': mathematics/differential-geometry/differential-manifolds.md
|
- 'Differential manifolds': mathematics/differential-geometry/differential-manifolds.md
|
||||||
|
- 'Topological notions': mathematics/differential-geometry/topological-notions.md
|
||||||
- 'Tangent spaces': mathematics/differential-geometry/tangent-spaces.md
|
- 'Tangent spaces': mathematics/differential-geometry/tangent-spaces.md
|
||||||
- 'Transformations': mathematics/differential-geometry/transformations.md
|
- 'Transformations': mathematics/differential-geometry/transformations.md
|
||||||
- 'Lengths and volumes': mathematics/differential-geometry/lengths-and-volumes.md
|
- 'Lengths and volumes': mathematics/differential-geometry/lengths-and-volumes.md
|
||||||
|
|
@ -175,25 +184,28 @@ nav:
|
||||||
- physics/index.md
|
- physics/index.md
|
||||||
- 'Classical Mechanics':
|
- 'Classical Mechanics':
|
||||||
- 'Newtonian mechanics':
|
- 'Newtonian mechanics':
|
||||||
- 'Newtonian formalism': physics/classical-mechanics/newtonian-mechanics/newtonian-formalism.md
|
- 'Newtonian formalism': physics/classical-mechanics/newtonian-mechanics/newtonian-formalism.md #Update
|
||||||
- 'Momentum': physics/classical-mechanics/newtonian-mechanics/momentum.md
|
- 'Momentum': physics/classical-mechanics/newtonian-mechanics/momentum.md #Update
|
||||||
- 'Energy': physics/classical-mechanics/newtonian-mechanics/energy.md
|
- 'Energy': physics/classical-mechanics/newtonian-mechanics/energy.md #Update
|
||||||
- 'Rotation': physics/classical-mechanics/newtonian-mechanics/rotation.md
|
- 'Rotation': physics/classical-mechanics/newtonian-mechanics/rotation.md #Update
|
||||||
- 'Particle systems': physics/classical-mechanics/newtonian-mechanics/particle-systems.md
|
- 'Particle systems': physics/classical-mechanics/newtonian-mechanics/particle-systems.md #Update
|
||||||
- 'Lagrangian mechanics':
|
- 'Lagrangian mechanics':
|
||||||
- 'Lagrangian formalism': physics/classical-mechanics/lagrangian-mechanics/lagrangian-formalism.md
|
- 'Lagrangian formalism': physics/classical-mechanics/lagrangian-mechanics/lagrangian-formalism.md #Update
|
||||||
- 'Lagrange equations': physics/classical-mechanics/lagrangian-mechanics/lagrange-equations.md
|
- 'Lagrange equations': physics/classical-mechanics/lagrangian-mechanics/lagrange-equations.md #Update
|
||||||
- 'Lagrange generalizations': physics/classical-mechanics/lagrangian-mechanics/lagrange-generalizations.md
|
- 'Lagrange generalizations': physics/classical-mechanics/lagrangian-mechanics/lagrange-generalizations.md #Update
|
||||||
- 'Hamiltonian mechanics':
|
- 'Hamiltonian mechanics':
|
||||||
- 'Hamiltonian formalism': physics/classical-mechanics/hamiltonian-mechanics/hamiltonian-formalism.md
|
- 'Hamiltonian formalism': physics/classical-mechanics/hamiltonian-mechanics/hamiltonian-formalism.md
|
||||||
- 'Equations of Hamilton': physics/classical-mechanics/hamiltonian-mechanics/equations-of-hamilton.md
|
- 'Equations of Hamilton': physics/classical-mechanics/hamiltonian-mechanics/equations-of-hamilton.md #Update
|
||||||
|
#- 'Field theory':
|
||||||
|
- 'Thermodynamics':
|
||||||
|
- 'Equilibrium formalism': physics/thermodynamics/equilibrium-formalism.md
|
||||||
|
- 'Non-equilibrium formalism': physics/thermodynamics/non-equilibrium-formalism.md
|
||||||
|
#- 'Statistical mechanics':
|
||||||
- 'Electromagnetism':
|
- 'Electromagnetism':
|
||||||
- 'Electrostatics': physics/electromagnetism/electrostatics.md
|
- 'Electrostatics': physics/electromagnetism/electrostatics.md
|
||||||
- 'Magnetostatics': physics/electromagnetism/magnetostatics.md
|
- 'Magnetostatics': physics/electromagnetism/magnetostatics.md
|
||||||
- 'Electromagnetic dynamics': physics/electromagnetism/electromagnetic-dynamics.md
|
- 'Electromagnetic dynamics': physics/electromagnetism/electromagnetic-dynamics.md
|
||||||
- 'Optics':
|
- 'Optics': #Update
|
||||||
- 'Waves': physics/electromagnetism/optics/waves.md
|
- 'Waves': physics/electromagnetism/optics/waves.md
|
||||||
- 'Electromagnetic waves': physics/electromagnetism/optics/electromagnetic-waves.md
|
- 'Electromagnetic waves': physics/electromagnetism/optics/electromagnetic-waves.md
|
||||||
- 'Reflection and refraction': physics/electromagnetism/optics/reflection-and-refraction.md
|
- 'Reflection and refraction': physics/electromagnetism/optics/reflection-and-refraction.md
|
||||||
|
|
@ -201,25 +213,20 @@ nav:
|
||||||
- 'Interference': physics/electromagnetism/optics/interference.md
|
- 'Interference': physics/electromagnetism/optics/interference.md
|
||||||
- 'Diffraction': physics/electromagnetism/optics/diffraction.md
|
- 'Diffraction': physics/electromagnetism/optics/diffraction.md
|
||||||
- 'Polarisation': physics/electromagnetism/optics/polarisation.md
|
- 'Polarisation': physics/electromagnetism/optics/polarisation.md
|
||||||
# - 'Quantum mechanics':
|
#- 'Quantum mechanics':
|
||||||
# - 'Statistical mechanics':
|
|
||||||
- 'Spacetime':
|
- 'Spacetime':
|
||||||
- 'Special formalism': physics/spacetime/special-formalism.md
|
- 'Special formalism': physics/spacetime/special-formalism.md
|
||||||
- 'General formalism': physics/spacetime/general-formalism.md
|
- 'General formalism': physics/spacetime/general-formalism.md
|
||||||
- 'Schwarzschild geometry': physics/spacetime/schwarzschild-geometry.md
|
- 'Schwarzschild geometry': physics/spacetime/schwarzschild-geometry.md
|
||||||
- 'Kerr geometry': physics/spacetime/kerr-geometry.md
|
- 'Kerr geometry': physics/spacetime/kerr-geometry.md
|
||||||
- 'Isotropic geometry': physics/spacetime/isotropic-geometry.md
|
- 'Isotropic geometry': physics/spacetime/isotropic-geometry.md
|
||||||
# - 'Relativistic mechanics':
|
##
|
||||||
# - 'Relativistic formalism': physics/relativistic-mechanics/relativistic-formalism.md
|
- 'Mathematical physics': #Should be removed
|
||||||
# - 'Thermodynamics':
|
- 'Error analysis': #Move to statistics
|
||||||
# - 'Classical thermodynamics'
|
|
||||||
# - 'Statistical thermodynamics'
|
|
||||||
- 'Mathematical physics':
|
|
||||||
- 'Error analysis':
|
|
||||||
- 'Error analysis formalism': physics/mathematical-physics/error-analysis/formalism.md
|
- 'Error analysis formalism': physics/mathematical-physics/error-analysis/formalism.md
|
||||||
- 'Maximum error': physics/mathematical-physics/error-analysis/maximum-error.md
|
- 'Maximum error': physics/mathematical-physics/error-analysis/maximum-error.md
|
||||||
- 'Standard error': physics/mathematical-physics/error-analysis/standard-error.md
|
- 'Standard error': physics/mathematical-physics/error-analysis/standard-error.md
|
||||||
- 'Signal analysis':
|
- 'Signal analysis': #Partly move to functional analysis, partly to ??
|
||||||
- 'Signals': physics/mathematical-physics/signal-analysis/signals.md
|
- 'Signals': physics/mathematical-physics/signal-analysis/signals.md
|
||||||
- 'Fourier series': physics/mathematical-physics/signal-analysis/fourier-series.md
|
- 'Fourier series': physics/mathematical-physics/signal-analysis/fourier-series.md
|
||||||
- 'Fourier transform': physics/mathematical-physics/signal-analysis/fourier-transform.md
|
- 'Fourier transform': physics/mathematical-physics/signal-analysis/fourier-transform.md
|
||||||
|
|
@ -227,7 +234,7 @@ nav:
|
||||||
- 'Amplitude modulation': physics/mathematical-physics/signal-analysis/amplitude-modulation.md
|
- 'Amplitude modulation': physics/mathematical-physics/signal-analysis/amplitude-modulation.md
|
||||||
- 'Signal filters': physics/mathematical-physics/signal-analysis/signal-filters.md
|
- 'Signal filters': physics/mathematical-physics/signal-analysis/signal-filters.md
|
||||||
- 'Systems': physics/mathematical-physics/signal-analysis/systems.md
|
- 'Systems': physics/mathematical-physics/signal-analysis/systems.md
|
||||||
- 'Vector analysis':
|
- 'Vector analysis': #Update and move to vector calculus
|
||||||
- 'Vectors': physics/mathematical-physics/vector-analysis/vectors.md
|
- 'Vectors': physics/mathematical-physics/vector-analysis/vectors.md
|
||||||
- 'Curves': physics/mathematical-physics/vector-analysis/curves.md
|
- 'Curves': physics/mathematical-physics/vector-analysis/curves.md
|
||||||
- 'Curvilinear coordinates': physics/mathematical-physics/vector-analysis/curvilinear-coordinates.md
|
- 'Curvilinear coordinates': physics/mathematical-physics/vector-analysis/curvilinear-coordinates.md
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue