an update of various things
This commit is contained in:
parent
7d7fea70c9
commit
0e188f5a2c
10 changed files with 165 additions and 197 deletions
|
|
@ -12,7 +12,7 @@ so that $\mathbf{\hat e}^i = A^i_j \mathbf{\hat f}^j$.
|
|||
|
||||
## Transformation of tensors
|
||||
|
||||
Recall from the section of [tensor-formalism]() that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
|
||||
Recall from the section of [tensor-formalism](tensor-formalism.md) that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
|
||||
|
||||
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}^p_q(V)$ be a tensor with $p=q=1$ without loss of generality and $B = A^{-1}$. Then $\mathbf{T}$ may be decomposed into
|
||||
>
|
||||
|
|
@ -26,12 +26,20 @@ Recall from the section of [tensor-formalism]() that a holor depends on the chos
|
|||
> with the holors related by
|
||||
>
|
||||
> $$
|
||||
> \overline T^i_j = B^i_k A^j_l T^k_l.
|
||||
> \overline T^i_j = B^i_k A^l_j T^k_l.
|
||||
> $$
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
We have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\mathbf{T} &= T^i_j B^k_i \mathbf{f}_k \otimes A^j_l \mathbf{\hat f}^l,\\
|
||||
&= B^k_i A^j_l T^i_j \mathbf{f}_k \otimes \mathbf{\hat f}^l,\\
|
||||
&= \overline T^i_j \mathbf{f}_i \otimes \mathbf{\hat f}^j.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
The homogeneous nature of the tensor transformation implies that a holor equation of the form $T^i_j = 0$ holds relative to any basis if it holds relative to a particular one.
|
||||
|
||||
|
|
@ -54,7 +62,17 @@ The homogeneous nature of the tensor transformation implies that a holor equatio
|
|||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
We have
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\bm{\mu} &= \mu_{i_1\dots i_n} A^{i_1}_{j_1} \mathbf{\hat f}^{j_1} \otimes \dots \otimes A^{i_n}_{j_n} \mathbf{\hat f}^{j_n},\\
|
||||
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} \mu_{i_1\dots i_n} \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} [i_1,\dots,i_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||
&= \det(A) [j_1,\dots,j_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
|
||||
&= \overline \mu_{i_1 \dots i_n} \mathbf{\hat f}^{i_1} \otimes \dots \otimes \mathbf{\hat f}^{i_1}.
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So that if $\bm{\mu}(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$, then $\bm{\mu}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \det(A).$
|
||||
|
||||
|
|
@ -75,10 +93,6 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
|
|||
>
|
||||
> then $\mu_{i_1 \dots i_n} = \overline \mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ is an invariant holor.
|
||||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
|
||||
## Transformation of Levi-Civita form
|
||||
|
||||
> *Theorem 3*: let $\bm{\epsilon} \in \bigwedge_n(V)$ be the Levi-Civita tensor with
|
||||
|
|
@ -94,4 +108,4 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
|
|||
|
||||
??? note "*Proof*:"
|
||||
|
||||
Will be added later.
|
||||
Follows directly from the definition $\bm{\epsilon} = \sqrt{g} \bm{\mu}$.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue