an update of various things

This commit is contained in:
Luc Bijl 2025-10-05 12:47:09 +02:00
parent 7d7fea70c9
commit 0e188f5a2c
10 changed files with 165 additions and 197 deletions

View file

@ -45,7 +45,7 @@ $$
## Outer product
> *Definition 3*: the outer product $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
> *Definition 3*: the **outer product** $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
>
> $$
> (f \otimes g)(x,y) = f(x) g(y),
@ -133,9 +133,45 @@ By definition tensors are basis independent. Holors are basis dependent.
We have from theorem 2 that the outer product of two tensors yields another tensor, with ranks adding up.
## Interior product
> *Definition 5*: the **left interior product** $f \llcorner \alpha: Y \to F$ of a scalar function $f:X \times Y \to F$ and a scalar $\alpha \in X$ is defined as
>
> $$
> (f \llcorner \alpha)(y) = f(\alpha,y) \qquad \forall y \in Y,
> $$
>
> and the **right interior product** $f \lrcorner \alpha: X \to F$ for a scalar $\alpha \in Y$ is defined as
>
> $$
> (f \lrcorner \alpha)(x) = f(x,\alpha) \qquad \forall x \in X.
> $$
Note that neither interior product is associative, commutatitive and only distributive in the field addition.
With the interior product we can partially contract a tensor (i.e. reduce its basis) with a (co)vector. Consider $\mathbf{T} \in \mathscr{T}^2_0(V)$ then
$$
\begin{align*}
\mathbf{T} \llcorner \mathbf{\hat v} &= T^{ij} \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_i) \mathbf{e}_j,\\
&= v_i T^{ij} \mathbf{e}_j.
\end{align*}
$$
or similarly
$$
\begin{align*}
\mathbf{T} \lrcorner \mathbf{\hat v} &= T^{ij} \mathbf{e}_i \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_j),\\
&= v_j T^{ij} \mathbf{e}_i.
\end{align*}
$$
for all $\mathbf{\hat v} \in V^*$.
## Inner product
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
> *Definition 6*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
>
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
@ -144,7 +180,7 @@ We have from theorem 2 that the outer product of two tensors yields another tens
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
> *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
> *Definition 7*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
>
> $$
> g_{ij} = \bm{g}(\mathbf{e}_i, \mathbf{e}_j).
@ -227,7 +263,7 @@ $$
with $u^j = g^{ij} u_i$.
> *Definition 7*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
> *Definition 8*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
>
> $$
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.