an update of various things

This commit is contained in:
Luc Bijl 2025-10-05 12:47:09 +02:00
parent 7d7fea70c9
commit 0e188f5a2c
10 changed files with 165 additions and 197 deletions

View file

@ -1,4 +1,6 @@
# Fiber bundles
# Topological notions
## Fiber bundles
Let $X$ be a manifold over a field $F$.
@ -54,4 +56,4 @@ with $T^{ij}_k \in \mathbb{K}$ holors of $\mathbf{T}$. Furthermore, we have a ba
>
> of the tensor fiber bundle $\mathscr{B}$.
Therefore, a tensor field assigns a tensor fiber (or tensor) to each point on a section of the manifold. These tensors may vary smoothly along the section of the manifold.
Therefore, a tensor field assigns a tensor fiber (or tensor) to each point on a section of the manifold. These tensors may vary smoothly along the section of the manifold.

View file

@ -45,7 +45,7 @@ $$
## Outer product
> *Definition 3*: the outer product $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
> *Definition 3*: the **outer product** $f \otimes g: X \times Y \to F$ of two scalar functions $f: X \to F$ and $g: Y \to F$ is defined as
>
> $$
> (f \otimes g)(x,y) = f(x) g(y),
@ -133,9 +133,45 @@ By definition tensors are basis independent. Holors are basis dependent.
We have from theorem 2 that the outer product of two tensors yields another tensor, with ranks adding up.
## Interior product
> *Definition 5*: the **left interior product** $f \llcorner \alpha: Y \to F$ of a scalar function $f:X \times Y \to F$ and a scalar $\alpha \in X$ is defined as
>
> $$
> (f \llcorner \alpha)(y) = f(\alpha,y) \qquad \forall y \in Y,
> $$
>
> and the **right interior product** $f \lrcorner \alpha: X \to F$ for a scalar $\alpha \in Y$ is defined as
>
> $$
> (f \lrcorner \alpha)(x) = f(x,\alpha) \qquad \forall x \in X.
> $$
Note that neither interior product is associative, commutatitive and only distributive in the field addition.
With the interior product we can partially contract a tensor (i.e. reduce its basis) with a (co)vector. Consider $\mathbf{T} \in \mathscr{T}^2_0(V)$ then
$$
\begin{align*}
\mathbf{T} \llcorner \mathbf{\hat v} &= T^{ij} \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_i) \mathbf{e}_j,\\
&= v_i T^{ij} \mathbf{e}_j.
\end{align*}
$$
or similarly
$$
\begin{align*}
\mathbf{T} \lrcorner \mathbf{\hat v} &= T^{ij} \mathbf{e}_i \mathbf{k}(\mathbf{\hat v}, \mathbf{e}_j),\\
&= v_j T^{ij} \mathbf{e}_i.
\end{align*}
$$
for all $\mathbf{\hat v} \in V^*$.
## Inner product
> *Definition 5*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
> *Definition 6*: an **inner product** on $V$ is a bilinear mapping $\bm{g}: V \times V \to F$ which satisfies
>
> 1. for all $\mathbf{u}, \mathbf{v} \in V: \; \bm{g}(\mathbf{u}, \mathbf{v}) = \overline{\bm{g}}(\mathbf{v}, \mathbf{u}),$
> 2. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F: \;\bm{g}(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \bm{g}(\mathbf{u}, \mathbf{v}) + \mu \bm{g}(\mathbf{u}, \mathbf{w}),$
@ -144,7 +180,7 @@ We have from theorem 2 that the outer product of two tensors yields another tens
It may be observed that $\bm{g} \in \mathscr{T}_2^0$. Unlike the Kronecker tensor, the existence of an inner product is never implied.
> *Definition 6*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
> *Definition 7*: let $G$ be the Gram matrix with its components $G \overset{\text{def}}= (g_{ij})$ defined as
>
> $$
> g_{ij} = \bm{g}(\mathbf{e}_i, \mathbf{e}_j).
@ -227,7 +263,7 @@ $$
with $u^j = g^{ij} u_i$.
> *Definition 7*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
> *Definition 8*: the basis $\{\mathbf{e}_i\}$ of $V$ induces a **reciprocal basis** $\{\mathbf{g}^{-1}(\mathbf{\hat e}^i)\}$ of $V$ given by
>
> $$
> \mathbf{g}^{-1}(\mathbf{\hat e}^i) = g^{ij} \mathbf{e}_j.

View file

@ -1,6 +1,6 @@
# Tensor symmetries
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field F and a pseudo inner product $\bm{g}$ on $V$.
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
## Symmetric tensors

View file

@ -12,7 +12,7 @@ so that $\mathbf{\hat e}^i = A^i_j \mathbf{\hat f}^j$.
## Transformation of tensors
Recall from the section of [tensor-formalism]() that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
Recall from the section of [tensor-formalism](tensor-formalism.md) that a holor depends on the chosen basis, but the corresponding tensor itself does not. This implies that holors transform in a particular way under a change of basis, which is characteristic for tensors.
> *Theorem 1*: let $\mathbf{T} \in \mathscr{T}^p_q(V)$ be a tensor with $p=q=1$ without loss of generality and $B = A^{-1}$. Then $\mathbf{T}$ may be decomposed into
>
@ -26,12 +26,20 @@ Recall from the section of [tensor-formalism]() that a holor depends on the chos
> with the holors related by
>
> $$
> \overline T^i_j = B^i_k A^j_l T^k_l.
> \overline T^i_j = B^i_k A^l_j T^k_l.
> $$
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\mathbf{T} &= T^i_j B^k_i \mathbf{f}_k \otimes A^j_l \mathbf{\hat f}^l,\\
&= B^k_i A^j_l T^i_j \mathbf{f}_k \otimes \mathbf{\hat f}^l,\\
&= \overline T^i_j \mathbf{f}_i \otimes \mathbf{\hat f}^j.
\end{align*}
$$
The homogeneous nature of the tensor transformation implies that a holor equation of the form $T^i_j = 0$ holds relative to any basis if it holds relative to a particular one.
@ -54,7 +62,17 @@ The homogeneous nature of the tensor transformation implies that a holor equatio
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\bm{\mu} &= \mu_{i_1\dots i_n} A^{i_1}_{j_1} \mathbf{\hat f}^{j_1} \otimes \dots \otimes A^{i_n}_{j_n} \mathbf{\hat f}^{j_n},\\
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} \mu_{i_1\dots i_n} \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} [i_1,\dots,i_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= \det(A) [j_1,\dots,j_n] \mathbf{\hat f}^{j_1} \otimes \dots \otimes \mathbf{\hat f}^{j_n},\\
&= \overline \mu_{i_1 \dots i_n} \mathbf{\hat f}^{i_1} \otimes \dots \otimes \mathbf{\hat f}^{i_1}.
\end{align*}
$$
Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So that if $\bm{\mu}(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$, then $\bm{\mu}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \det(A).$
@ -75,10 +93,6 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
>
> then $\mu_{i_1 \dots i_n} = \overline \mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ is an invariant holor.
??? note "*Proof*:"
Will be added later.
## Transformation of Levi-Civita form
> *Theorem 3*: let $\bm{\epsilon} \in \bigwedge_n(V)$ be the Levi-Civita tensor with
@ -94,4 +108,4 @@ Then $\det(A)$ is the volume scaling factor of the transformation with $A$. So t
??? note "*Proof*:"
Will be added later.
Follows directly from the definition $\bm{\epsilon} = \sqrt{g} \bm{\mu}$.

View file

@ -1,6 +1,6 @@
# Volume forms
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n,$ a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$ and a pseudo inner product $\bm{g}$ on $V.$
We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim V = n$, with a basis $\{\mathbf{e}_i\}_{i=1}^n$, a corresponding dual space $V^*$ with a basis $\{\mathbf{\hat e}^i\}_{i=1}^n$, a field $F$ and a pseudo inner product $\bm{g}$ on $V$.
## n-forms
@ -12,7 +12,7 @@ We have a $n \in \mathbb{N}$ finite dimensional vector space $V$ such that $\dim
>
> then $\bm{\mu}$ is the **unit volume form** with respect to the basis $\{\mathbf{e}_i\}$.
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in \mathbb{K}$.
Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2 \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$, then $\bm{\mu}_1 = \lambda \bm{\mu}_2$ with $\lambda \in F$.
> *Proposition 1*: the unit volume form $\bm{\mu} \in \bigwedge_n(V) \backslash \{\mathbf{0}\}$ may be given by
>
@ -27,7 +27,31 @@ Note that $\dim \bigwedge_n(V) = 1$ and consequently if $\bm{\mu}_1, \bm{\mu}_2
??? note "*Proof*:"
Will be added later.
Let $\pi = [\pi(1),\dots,\pi(n)]$ be any permutation of the set $\{1,\dots,n\}$, the unit volume form $\bm{\mu}$ is defined as
$$
\bm{\mu}(\mathbf{e}_{\pi(1)},\dots,\mathbf{e}_{\pi(2)}) = \mathrm{sign}(\pi),
$$
thus
$$
\bm{\mu} = \mu_{i_1\dots i_n} \mathbf{\hat e}^{i_1} \otimes \dots \otimes \mathbf{\hat e}^{i_n}.
$$
Furthermore $\mathscr{A}(\bm{\mu}) = \bm{\mu}$. Then
$$
\bm{\mu} = \mu_{i_1\dots i_n} \frac{1}{n!} \mathbf{\hat e}^{i_1} \wedge \dots \wedge \mathbf{\hat e}^{i_n},
$$
and going back to the definition only requires us to consider
$$
\bm{\mu} = \mathbf{\hat e}^{1} \wedge \dots \wedge \mathbf{\hat e}^{n},
$$
such that $\mu_{i_1\dots i_n} = [i_1,\dots,i_n]$.
The normalisation of the unit volume form $\bm{\mu}$ requires a basis. Consequently, the identification $\mu_{i_1 \dots i_n} = [i_1, \dots, i_n]$ holds only relative to the basis.
@ -47,7 +71,7 @@ $$
by convention, to resolve ambiguity with respect to the meaning of $\mu_{i_1 \dots i_n}$ without using another symbol or extra accents.
Using theorem 2 in the section of [tensor symmetries]() we may state the following.
Using theorem 2 in the section of [tensor symmetries](tensor-symmetries.md) we may state the following.
> *Proposition 2*: let $(V, \bm{\mu})$ be a vector space with an oriented volume form, then we have
>
@ -59,7 +83,15 @@ Using theorem 2 in the section of [tensor symmetries]() we may state the followi
??? note "*Proof*:"
Will be added later.
We have
$$
\begin{align*}
\bm{\mu}(\mathbf{v}_1,\dots,\mathbf{v}_n) &= \mu_{i_1\dots i_n} \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
&= [i_1,\dots,i_n] \mathbf{k}(\mathbf{\hat e}^{i_1},\mathbf{v}_1) \cdots \mathbf{k}(\mathbf{\hat e}^{i_n},\mathbf{v}_n),\\
&= \det\big(\mathbf{k}(\mathbf{\hat e}^i,\mathbf{v}_j)\big).
\end{align*}
$$
Which reveals the role of the Kronecker tensor and thus the role of the dual space in the definition of $\bm{\mu}$. We may also conclude that an oriented volume $\bm{\mu} \in \bigwedge_n(V)$ on a vector space $V$ does not require an inner product.
@ -73,9 +105,9 @@ From proposition 2 it may also be observed that within a geometrical context the
> \bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k(\mathbf{v}_{k+1}, \dots, \mathbf{v}_n) = \bm{\mu}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n),
> $$
>
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$ with $\lrcorner$ the insert operator.
> for all $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n \in V$.
It follows that $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
It follows that the $(n-k)$-form $\bm{\mu} \lrcorner \mathbf{u}_1 \lrcorner \dots \lrcorner \mathbf{u}_k \in \bigwedge_{n-k}(V)$ can be written as
$$
\begin{align*}
@ -120,7 +152,16 @@ then we have $\epsilon_{i_1 \dots i_n} = \sqrt{g} \mu_{i_1 \dots i_n}$ and $\eps
??? note "*Proof*:"
Will be added later.
The reciprocal Levi-Civita tensor may be written as
$$
\begin{align*}
\mathbf{g}(\bm{\epsilon}) &= \sqrt{g} \mathbf{g}(\mathbf{\hat e}^1) \wedge \dots \wedge \mathbf{g}(\mathbf{\hat e}_n),\\
&= \sqrt{g} g^{1i_1} \mathbf{e}_{i_1} \wedge \dots \wedge g^{ni_n} \mathbf{e}_{i_n},\\
&= \sqrt{g} \det (G^{-1}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n,\\
&= \frac{1}{\sqrt{g}} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n.
\end{align*}
$$
We may decompose the reciprocal Levi-Civita tensor by
@ -128,4 +169,4 @@ $$
\mathbf{g}(\bm{\epsilon}) = \epsilon^{i_1 \dots i_n} \mathbf{e}_{i_1} \otimes \cdots \otimes \mathbf{e}_{i_n} = \epsilon^{|i_1 \dots i_n|} \mathbf{e}_{i_1} \wedge \cdots \wedge \mathbf{e}_{i_n},
$$
then we have $\epsilon^{i_1 \dots i_n} = \frac{1}{\sqrt{g}} \mu^{i_1 \dots i_n}$ and $\epsilon^{|i_1 \dots i_n|} = \frac{1}{\sqrt{g}}$.
then we have $\epsilon^{i_1 \dots i_n} = \frac{1}{\sqrt{g}} \mu^{i_1 \dots i_n}$ and $\epsilon^{|i_1 \dots i_n|} = \frac{1}{\sqrt{g}}$.